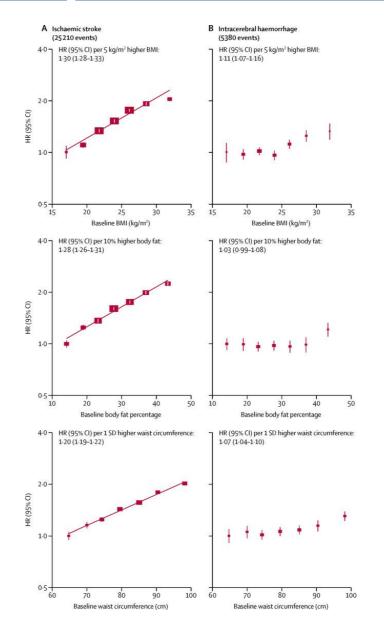

대한가정의학회 -비만대사증후군연구회


Cutting edge treatment of complications of obesity; Cutting edge treatment of stroke

Asan Medical Center, University of Ulsan Stroke center Department of Neurology Bum Joon Kim MD

Obesity

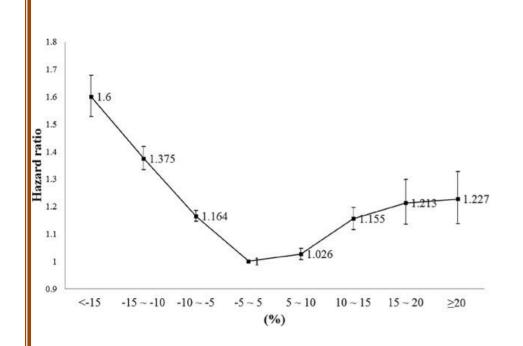
- Associated with stroke risk
 - BMI < Central obesity
 - Elder population < Middle age</p>
 - Both Ischemic and hemorrhagic stroke

Lancet Glob Health 2018; 6: e630-40

A Population-Based Study From the Lund Stroke Register

Ann-Cathrin Jönsson, Ingrid Lindgren, Bo Norrving and Arne Lindgren Originally published 31 Jan 2008 | https://doi.org/10.1161/STROKEAHA.107.497602 | Stroke. 2008;39:918–923 Other version(s) of this article V

Abstract


Background and Purpose— Data on the prevalence and indicators of weight loss in population-based groups of stroke survivors are scarce. We aimed to find the predictors and indicators of weight loss >3 kg as a possible marker of malnutrition after stroke.

Methods— We registered weight at baseline, after 4 months, and 1 year later in 305 survivors from a population-based cohort of first-ever stroke patients. Characteristics of the patients were registered at baseline and follow-ups, including glycosylated hemoglobin at baseline and follow-up II, eating difficulties at both follow-ups, and screening for depression at follow-up II. We used univariate and multivariate analyses to find baseline predictors and follow-up indicators related to weight loss >3 kg from baseline.

Results— Among the 305 patients, 60% were male, the mean age was 72.5 years, and mean body mass index was 25.8 kg/m². The main stroke types were cerebral infarction (89%), intracerebral hemorrhage (7%), and subarachnoid hemorrhage (4%). Weight loss >3 kg was found in 74 (24%) patients (mean, -6.6 kg) after 4 months and in 79 patients (26%; mean, -8.3 kg) 1 year later. Severe stroke and elevated glycosylated hemoglobin levels were baseline predictors of weight loss >3 kg. Indicators associated with short-term weight loss (at follow-up I) were eating difficulties, low prealbumin value, and dependence (Barthel Index), whereas indicators associated with long-term weight loss (follow-up II) were eating difficulties, hemorrhagic stroke, and low prealbumin value.

Conclusions— Weight loss >3 kg after stroke indicates the need for closer observation regarding nutritional status. Monitoring of body weight may be useful, particularly among patients with severe stroke, eating difficulties, low prealbumin values, and impaired glucose metabolism.

Obesity paradox

- Less mortality in those with obesity after stroke
 - Obese stroke patients, compared with low or normal weight patients, may experience
 - 1) stroke subtypes associated with lower recurrence risk or
 - 2) receive more aggressive therapy
 - 3) survival bias; obese patients who have survived until their event may be somehow healthier individuals

Obesity and SVO

Visceral fat accumulation is associated with cerebral small vessel disease

K Yamashiro ¹, R Tanaka, Y Tanaka, N Miyamoto, Y Shimada, Y Ueno, T Urabe, N Hattori

Affiliations + expand PMID: 24495037 DOI: 10.1111/ene.12374

Abstract

Background and purpose: Obesity is associated with the risk of coronary artery disease and stroke. Visceral fat plays a significant role in the atherogenic effects of obesity. Whether visceral fat accumulation, as measured by computed tomography (CT), is an independent risk factor for the presence of cerebral small vessel disease (SVD) was investigated.

Methods: This study comprised 506 Japanese subjects 35-74 years of age (mean 55.3 years) without a history of symptomatic cerebrovascular disease who underwent health screening tests, including brain magnetic resonance imaging, carotid echography and measurements of the visceral fat area (VFA) and subcutaneous fat area (SFA) on abdominal CT. Visceral fat accumulation was defined as VFA \geq 100 cm(2). Logistic regression analysis was performed to examine the associations between visceral fat accumulation and cerebral SVD such as white matter lesions (WMLs) and silent lacunar infarction (SLI).

Results: The prevalence of WMLs and SLI but not carotid plaque were significantly higher in subjects with VFA \geq 100 cm(2) than those with VFA < 100 cm(2). A VFA \geq 100 cm(2) was associated with WMLs and SLI independent of age, cardiovascular risk factors and other measurements of obesity, such as waist circumference and body mass index. A large waist circumference was independently associated with SLI. SFA, the combination of VFA and SFA, and body mass index were not associated with WMLs or SLI.

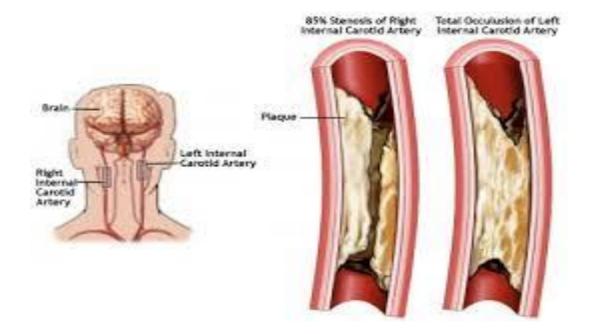
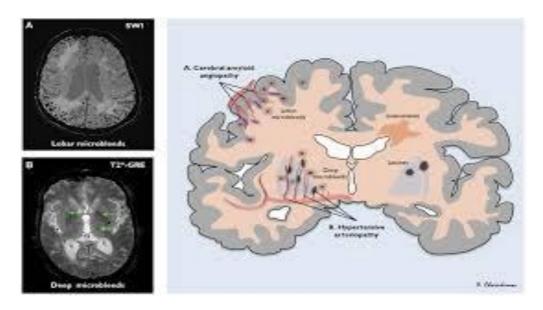

Conclusions: Visceral fat accumulation was independently associated with the presence of cerebral SVD in subjects without a history of symptomatic cerebrovascular disease.

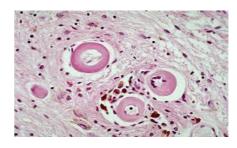
Table 3. Association of Obesity and IR With Incident Lacunes, by Size

	Incident Lacunes, 3–7 mm		Incident	Lacunes, >7 to 20 mm
	Odds Ratio	95% Confidence Interval	Odds Ratio	95% Confidence Interval
Insulin*	1.13	0.89–1.42	1.16	0.89–1.51
HOMA-IR*	1.19	0.96-1.46	1.23	0.97-1.55
Body mass index*	1.00	0.75–1.33	1.18	0.87—1.58
Waist circumference*	1.07	0.82–1.41	1.34	1.00–1.81
Waist:hip ratio*	1.33	1.00–1.80	1.43	1.02-2.00
Triglycerides*	1.32	1.09–1.60	1.21	0.97–1.50
High-density lipoprotein*	0.73	0.53–1.02	0.67	0.45-1.00
Systolic blood pressure*†	1.22	0.94–1.60	1.28	0.96-1.71
MetS†	1.85	1.09–3.14	3.34	1.78–6.30
IR score*†	1.34	1.01–1.79	1.62	1.16-2.25



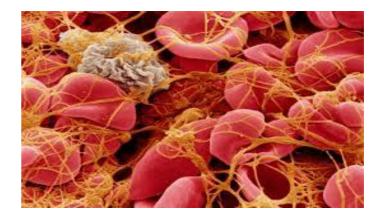

Stroke, heterogeneous disease

Large artery atherosclerosis


- artery to artery embolization
- in situ thrombosis
- hemodynamic
- local branch occlusion

Small artery occlusion

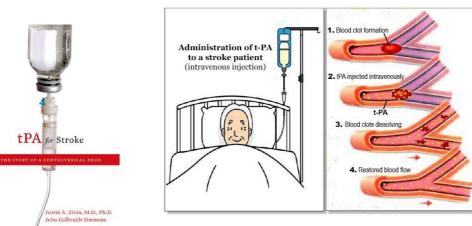
- lipohyalinosis
- microatheroma
- branch atheromatous disease


Damaged part of the brain The thrombus -blocks the small vessels of the brain

High-Risk Sources	Medium-Risk Sources
Mechanical Prosthetic valve	Mitral valve prolapse
Mitral stenosis with AF	Mitral annulus calcification
AF (other than lone AF)	Mitral stenosis without AF
Left atrial /atrial appendage thrombus	Left atrial turbulence (smoke)
Sick sinus thrombus	Atrial septal aneurysm
RecentMI (< 4 weeks)	Patent foramen ovale
Left ventricular thrombus	Atrial flutter
Dilated cardiomyopathy	LoneAF
Infective endocarditis	Bioprosthetic cardiac valve
Akinetic left ventricular segment	Nonbacterial thrombotic endocarditis
Atrial myxoma	MI (> 4 weeks and 6 < weeks)

Atrial fibrillation in the left atrium

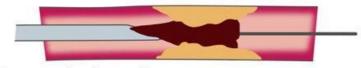
Thrombus (clot)


Heart

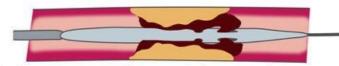


Treatment does not differ in hyperacute stroke

• IV thrombolysis



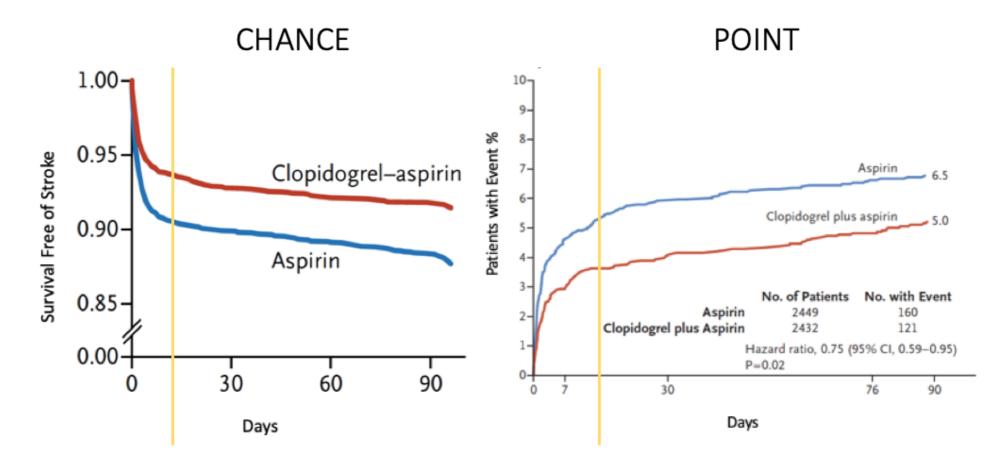
• Endovascular treatment


Thrombectomy

Catheter aspiration thrombectomy

Blood clot is removed using suction

Mechanical thrombectomy



Blood clot is broken up into small pieces and removed

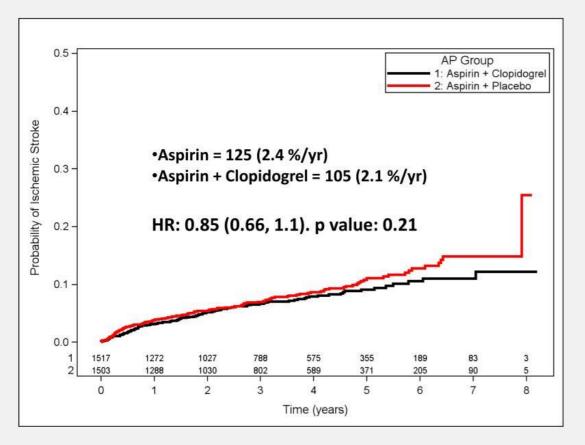
But may differ in secondary stroke prevention

- Antiplatelet agents
- Acute stage

Antiplatelet agent for secondary prevention

End Point	Clopidogrel plus Aspirin (N = 7802)	Placebo plus Aspirin (N=7801)	Relative Risk (95% CI)*	P Value	
	no.	(%)			
Efficacy end points					
Primary efficacy end point	534 (6.8)	573 (7.3)	0.93 (0.83–1.05)	0.22	
Death from any cause	371 (4.8)	374 (4.8)	0.99 (0.86–1.14)	0.90	
Death from cardiovascular causes	238 (3.1)	229 (2.9)	1.04 (0.87–1.25)	0.68	
Myocardial infarction (nonfatal)	146 (1.9)	155 (2.0)	0.94 (0.75–1.18)	0.59	
Ischemic stroke (nonfatal)	132 (1.7)	163 (2.1)	0.81 (0.64–1.02)	0.07	
Stroke (nonfatal)	150 (1.9)	189 (2.4)	0.79 (0.64–0.98)	0.03	
Secondary efficacy end point†	1301 (16.7)	1395 (17.9)	0.92 (0.86–0.995)	0.04	
Hospitalization for unstable angina, transient ischemic attack, or revascularization	866 (11.1)	957 (12.3)	0.90 (0.82–0.98)	0.02	
Safety end points					
Severe bleeding	130 (1.7)	104 (1.3)	1.25 (0.97–1.61)	0.09	
Fatal bleeding	26 (0.3)	17 (0.2)	1.53 (0.83–2.82)	0.17	
Primary intracranial hemorrhage	26 (0.3)	27 (0.3)	0.96 (0.56–1.65)	0.89	
Moderate bleeding	164 (2.1)	101 (1.3)	1.62 (1.27-2.08)	<0.001	

* CI denotes confidence interval.


† The secondary efficacy end point was the first occurrence of myocardial infarction, stroke, death from cardiovascular causes, or hospitalization for unstable angina, a transient ischemic attack, or a revascularization procedure (coronary, cerebral, or peripheral).

In lacunar stroke (SVO)

SPS3

Ischemic Stroke

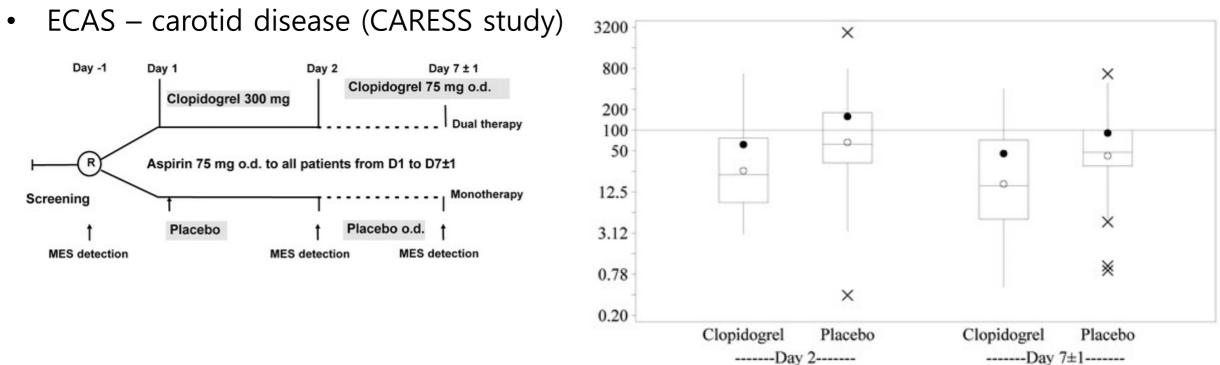
Outcome	Aspirin plus Placebo (N=1503)		Aspirin plus Clopidogrel (N = 1517)		Hazard Ratio (95% CI)	P Value
	no.	rate (%/yr)	no.	rate (%/yr)		
All major hemorrhages	56	1.1	105	2.1	1.97 (1.41–2.71)	< 0.001
Intracranial hemorrhages†	15*	0.28	22	0.42	1.52 (0.79–2.93)	0.21
Intracerebral	8	0.15	15	0.28	1.92 (0.82–4.54)	0.14
Subdural or epidural	6	0.11	7	0.13	1.23 (0.41–3.64)	0.72
Other	4	0.07	2	0.04	0.53 (0.10–2.89)	0.46
Extracranial bleeding	42	0.79	87	1.7	2.15 (1.49–3.11)	<0.001
Gastrointestinal±	28	0.52	58	1.1	2.14 (1.36–3.36)	<0.001
Fatal hemorrhages	4	0.07	9	0.17	2.29 (0.70–7.42)	0.17
Intracranial	4	0.07	7	0.13	1.78 (0.52–6.07)	0.36
Extracranial	0	0	2	0.04	_	_

* A time-to-first-event model was used for each outcome category; rates are annualized. All adjudications were performed centrally by the SPS3 adjudication committee. CI denotes confidence interval.

 † In the group taking aspirin plus placebo, two events were adjudicated as both intracerebral and other, and one event was adjudicated as both intracerebral and subdural. In the group taking aspirin plus clopidogrel, one event was adjudicated as both intracerebral and other, and one event was adjudicated as both intracerebral and subdural.
 The site of bleeding was determined by an investigator at the local study center.

THE LANCET Neurology

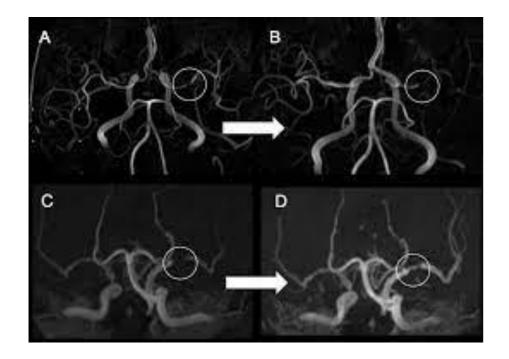
ARTICLES | VOLUME 17, ISSUE 6, P509-518, JUNE 2018


Prevention of cardiovascular events in Asian patients with ischaemic stroke at high risk of cerebral haemorrhage (PICASSO): a multicentre, randomised controlled trial

Bum Joon Kim, MD 🔹 Eun-Jae Lee, MD 🔹 Prof Sun U Kwon, MD 🙁 🖂 🛛 Jong-Ho Park, MD 🍨 Prof Yong-Jae Kim, MD 🔹

Prof Keun-Sik Hong, MD • et al. Show all authors • Show footnotes B 0.10 -0.20 -- Cilostazol Published: June, 2018 • DOI: - Aspirin 0.08 -0.16 Cumulative incidence 0.12 -0.06 -0.08 0.04 -0.04 0.02 -HR 0.80, 95% CI 0.57-1.11 HR 0-51, 97-5% CI 0-20-1-27 Number at risk 580 368 218 580 370 218 93 Cilostazol 755 93 15 755 15 93 581 581 234 9 757 374 234 93 Aspirin 757 374 9

Large artery atherosclerosis



Stroke Mechanisms Associated With Each Symptomatic Vessel (n=925*)

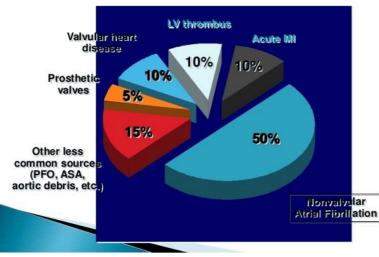
	Artery-to-Artery Embolism	In Situ Thromobo-occlusion	Local Branch Occlusion	Hemodynamic Impairment	Mixed	Tota
ACA	20 (39.2)	24 (47.1)	1 (2.0)	0	6 (11.7)	51
MCA	172 (50.6)	67 (19.7)	53 (15.6)	3 (0.9)	45 (13.2)	340
Distal ICA	43 (69.4)	5 (8.1)	1 (1.6)	2 (3.2)	11 (17.7)	62
PCA	21 (36.8)	16 (28.1)	13 (22.8)	0	7 (12.3)	57
BA	14 (16.9)	6 (7.2)	53 (63.9)	0	10 (12.0)	83
Distal VA	34 (53.1)	7 (10.9)	17 (26.6)	0	6 (9.4)	64
Proximal ICA	214 (92.6)	2 (0.9)	0	3 (1.3)	12 (5.2)	231
Proximal VA	34 (91.9)	0	0	0	3 (8.1)	37
ICAS	304 (46.3)	125 (19.0)	138 (21.0)	5 (0.8)	85 (12.9)	657
ECAS	248 (92.5)	2 (0.7)	0	3 (1.1)	15 (5.6)	268
Anterior	449 (65.5)	98 (14.3)	56 (8.2)	8 (1.2)	74 (10.8)	685
Posterior	103 (42.9)	29 (12.1)	82 (34.2)	0	26 (10.8)	240
Anterior ICAS	235 (51.8)	96 (21.1)	56 (12.3)	5 (1.1)	62 (13.7)	454
Posterior ICAS	69 (34.0)	29 (14.3)	82 (40.4)	0	23 (11.3)	203

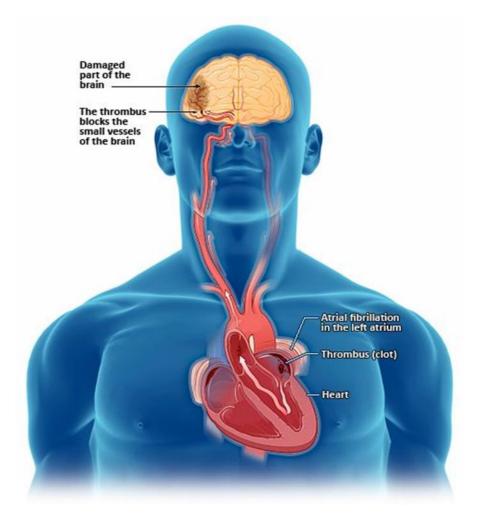
- ICAS
 - More various pathomechanism

Stroke Mechanisms Associated With Each Symptomatic Vessel (n=925*)

	Artery-to-Artery Embolism	In Situ Thromobo-occlusion	Local Branch Occlusion	Hemodynamic Impairment	Mixed	Tota
ACA	20 (39.2)	24 (47.1)	1 (2.0)	0	6 (11.7)	51
MCA	172 (50.6)	67 (19.7)	53 (15.6)	3 (0.9)	45 (13.2)	340
Distal ICA	43 (69.4)	5 (8.1)	1 (1.6)	2 (3.2)	11 (17.7)	62
PCA	21 (36.8)	16 (28.1)	13 (22.8)	0	7 (12.3)	57
BA	14 (16.9)	6 (7.2)	53 (63.9)	0	10 (12.0)	83
Distal VA	34 (53.1)	7 (10.9)	17 (26.6)	0	6 (9.4)	64
Proximal ICA	214 (92.6)	2 (0.9)	0	3 (1.3)	12 (5.2)	231
Proximal VA	34 (91.9)	0	0	0	3 (8 1)	37
ICAS	304 (46.3)	125 (19.0)	138 (21.0)	5 (0.8)	85 (12.9)	657
ECAS	248 (92.5)	2 (0.7)	0	3 (1.1)	15 (5.6)	268
Anterior	449 (65.5)	98 (14.3)	56 (8.2)	8 (1.2)	74 (10.8)	685
Posterior	103 (42.9)	29 (12.1)	82 (34.2)	0	26 (10.8)	240
Anterior ICAS	235 (51.8)	96 (21.1)	56 (12.3)	5 (1.1)	62 (13.7)	454
Posterior ICAS	69 (34.0)	29 (14.3)	82 (40.4)	0	23 (11.3)	203

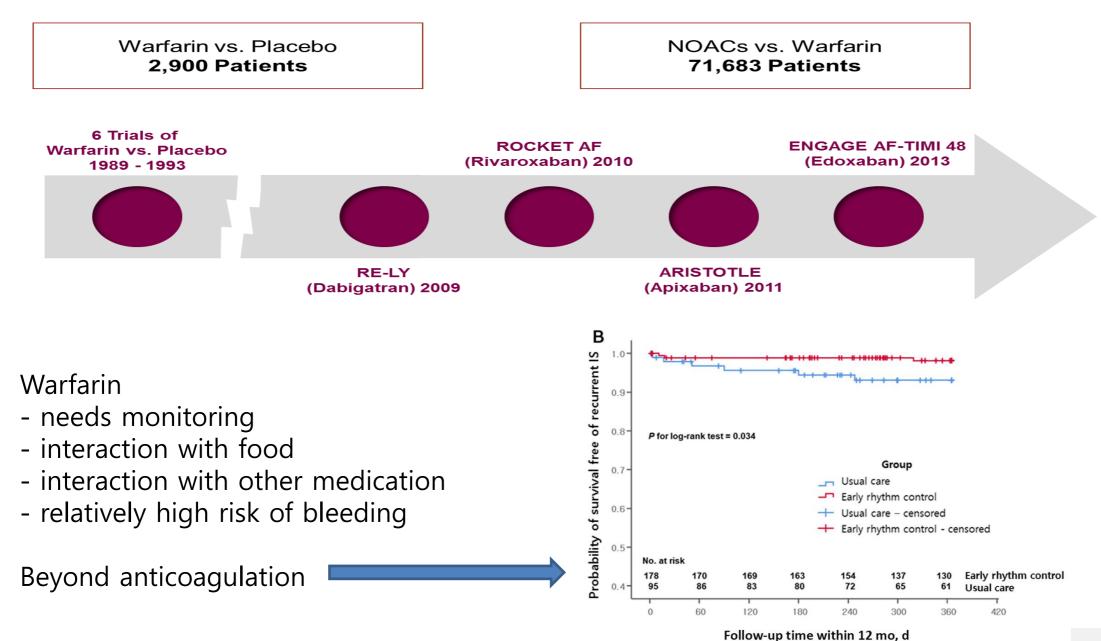
Overall change in the symptomatic stenosis was significantly favorable (less progression and more regression) in the cilostazol group (P0.049 by 2 trend test, post hoc analysis)

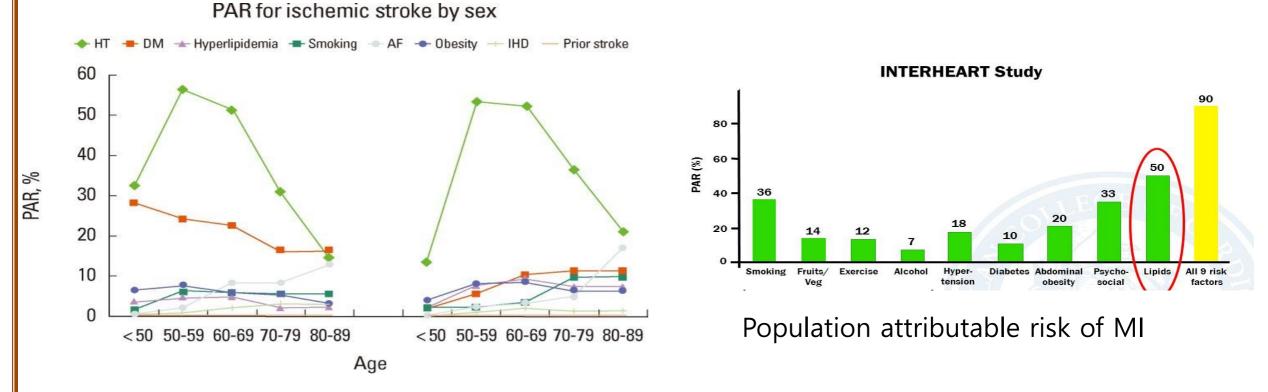



Cardioembolism

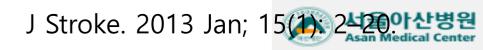
- Cardioembolic stroke
 - Sudden occlusion of major vessel by clot from heart
 - Large infarction, high severity
 - Poor prognosis

Anticoagulation

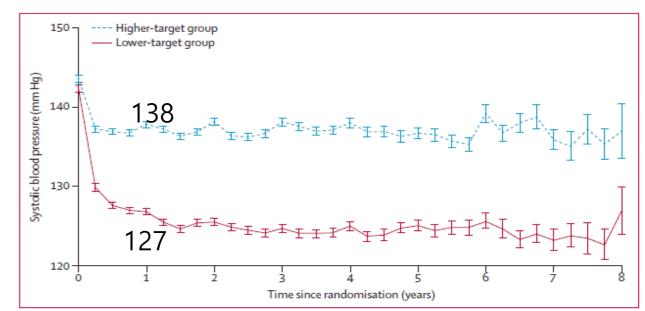

High-Risk Sources	Medium-Risk Sources	
Mechanical Prosthetic valve	Mitral valve prolapse	
Mitral stenosis with AF	Mitral annulus calcification	
AF (other than Ione AF)	Mitral stenosis without AF	
Left atrial /atrial appendage thrombus	Left atrial turbulence (smoke)	
Sick sinus thrombus	Atrial septal aneurysm	
Recent MI (< 4 weeks)	Patent foramen ovale	
Left ventricular thrombus	Atrial flutter	
Dilated cardiomyopathy	LoneAF	
Infective endocarditis	Bioprosthetic cardiac valve	
Akinetic left ventricular segment	Nonbacterial thrombotic endocarditis	URCES
Atrial myxoma	MI (> 4 weeks and 6 < weeks)	-011020

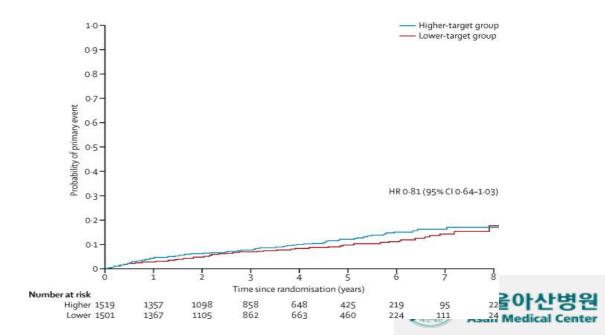


NOACs



Blood pressure control


- Hypertension is the most important population attributable risk factor in stroke patients
- Both in men and women, and in most ages.
- Up to 60 % of strokes are attributable to hypertension



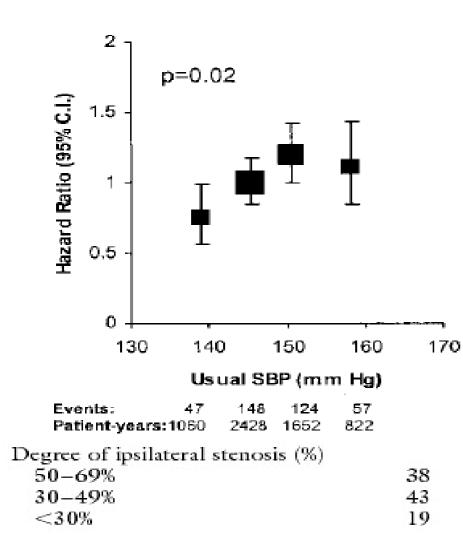
SPS-3 trial

- Patients with **lacunar infarction** defined by MR
- 2x2 factorial design
 - BP arm: Open label trial
 - 130-139 vs. less than 130
- Primary endpoint
 - Reduction in stroke
 - Ischemic and hemorrhagic

	Higher-target	Lower-target
	group (n=1519)	group (n=1501)
Age (years)	63 (10-8)	63 (10.7)
Men	990 (65%)	912 (61%)
Blood pressure at entry (mm Hg)		
Systolic	144 (19)	142 (19)
Diastolic	79 (11)	78 (10)
Body-mass index (kg/m²)	29.2 (7.5)	29.0 (6.1)
History of hypertension	1137 (75%)	1127 (75%)
Diabetes mellitus	553 (36%)	553 (37%)
Ischaemic heart disease	173 (11%)	144 (10%)
Previous clinical stroke or TIA	211 (14%)	237 (16%)
Current tobacco smoker	308 (20%)	309 (21%)

SPS3 trial main result

	Higher-target group (n=1519)		Lower-targ (n=1501)	Lower-target group (n=1501)		p value
	Number of patients	Rate (% per patient-year)	Number of patients	Rate (% per patient-year)	-	
Stroke						
All stroke	152	2.77%	125	2.25%	0·81 (0·64-1·03)	0.08
Ischaemic stroke or unknown	131	2.4%	112	2.0%	0·84 (0·66–1·09)	0.19
Intracranial haemorr	hage					
All	21*	0.38%	13†	0.23%	0·61 (0·31–1·22)	0.16
Intracerebral	16	0.29%	6	0.11%	0·37 (0·15–0·95)	0.03
Subdural or epidural	5	0.091%	6	0.11%	1·18 (0·36–3·88)	0.78
Other	2	0.036%	4	0.072%	1·97 (0·36–10·74)	0.43
Disabling or fatal stroke‡	49	0.89%	40	0.72%	0·81 (0·53–1·23)	0.32
Myocardial infarction	40	0.70%	36	0.62%	0·88 (0·56–1·39)	0.59
Major vascular event*	188	3.46%	160	2.91%	0·84 (0·68–1·04)	0.10


Patients with small vessel occlusion (Lacunar infarction) BP lowering under 130 reduced ICH and may be beneficial



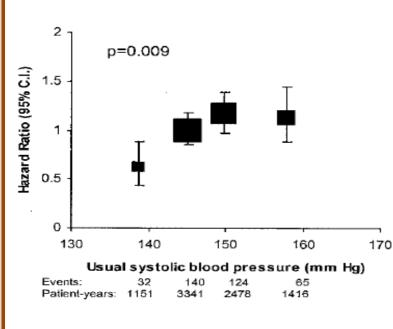
Carotid disease

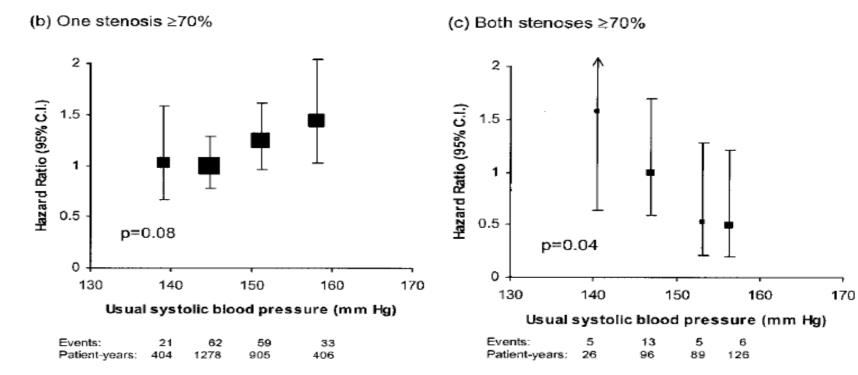
(b) NASCET

(c) ECST

Lowering BP to SBP 140 mmHg can be beneficial in those with carotid disease, But need consideration for stenosis degree

39


42


19

Carotid disease

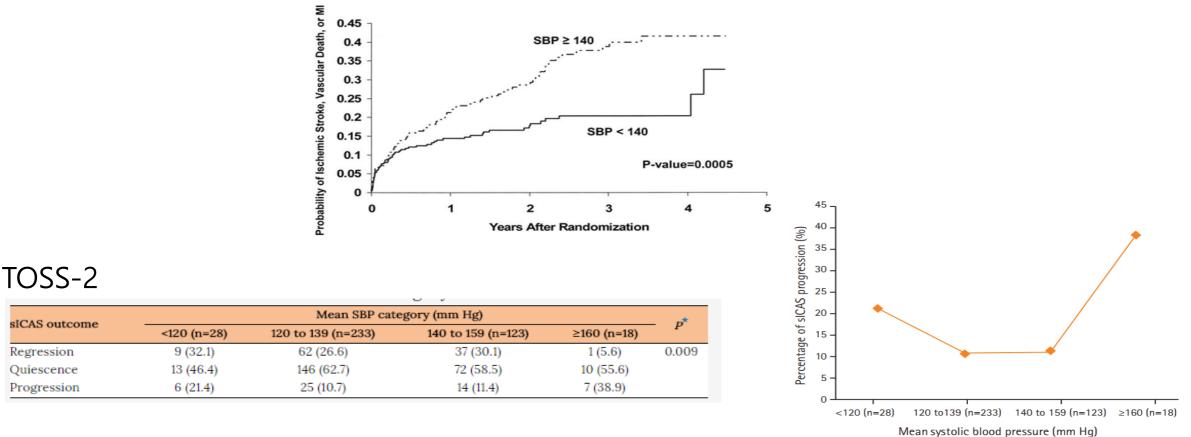
TABLE 3.	HRs (95%	CI) for the Risk of Stroke in Patients C
to Severity	of Carotid	Disease Within the Prespecified Blood

		SBP, n	nm Hg
Stenosis Group	<130	130-149	150-10
Bilateral <70%	1 (0.69–1.44)	1 (0.84–1.19)	1 (0.83–1
Unilateral ≥70%	1.90 (1.24–2.89)	1.18 (0.92–1.51)	1.27 (0.99-
Р	0.025	0.30	0.13
Bilateral ≥70%	5.97 (2.43-14.68)	2.54 (1.47-4.39)	0.97 (0.4–
Р	<0.001	0.001	0.95

HRs are derived from a Cox proportional-hazards model, are stratified by age, sex, and previous coronary heart disease. Patients with bilateral <7

In those with Carotid stenosis less than 70% SBP can be lowered to 140 mm Hg

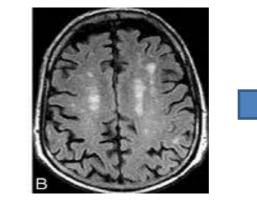
In those with 70% stenosis Unilateral: 150 mmHg Bilateral: > 150 mmHg

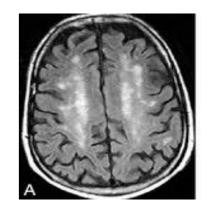


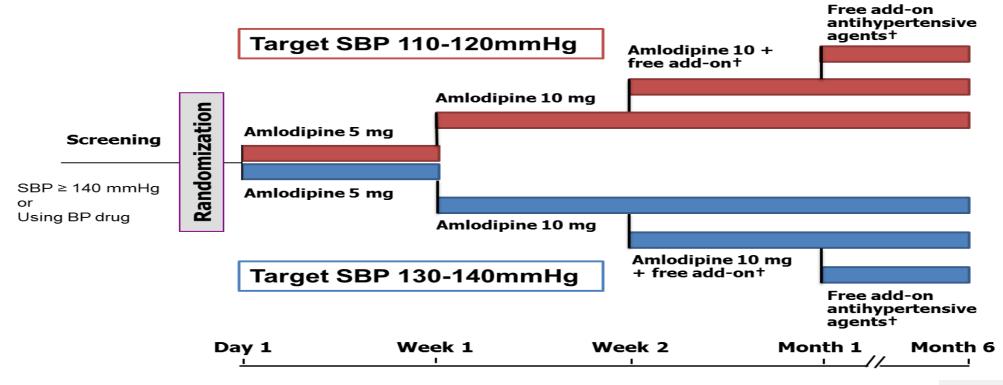
ICAS

• WASID

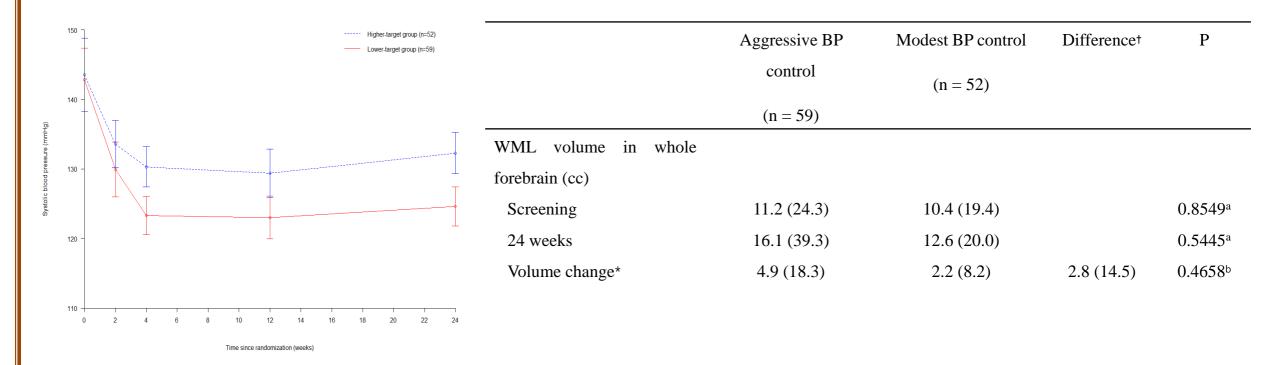
•


- SBP < 140 mmHg vs. SBP > 140 mmHg
- increased risk of recurrent stroke (adjusted HR, 1.63, 95% CI 1.11–2.40) and major cardiovascular events (1.79, 1.27–2.52)




Neurology 2007 69 2063-2068 Journal of Stroke 2017;19(3):304-31 145an Medical Cent

ICAS



Free add-on[†] - ARB/ACEI, diuretics or beta blockers except CCB

* If SBP is below target range, skip or reduce BP lowering drug (amlodipine first)

STABLE ICAS

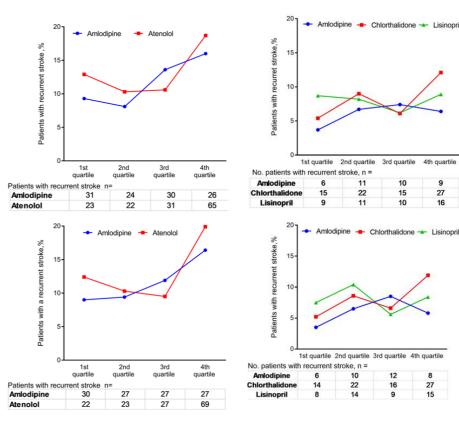
Failed to prove non-inferiority of intensive BP lowering in Stable ICAS patients.

How about BPV ? (STABLE ICAS trial)

			Low BPV (<i>n</i> = 37)	Middle BPV (n = 37)	High BPV (<i>n</i> = 37)	Р
132 patients		Age, years	61.7 [9.9]	65.4 [8.7]	64.3 [9.4]	0.23
randomized		Male	19 (51.4)	24 (64.9)	22 (59.5)	0.48
	3 patients excluded after randomization	Diabetes	14 (37.8)	16 (43.2)	19 (51.4)	0.24
		Hyperlipidemia	26 (70.3)	16 (43.2)	15 (40.5)	0.01
	18 patients not	Coronary artery disease	3 (8.1)	2 (5.4)	1 (2.7)	0.31
	received f/u MR	Smoking	15 (40.5)	19 (51.4)	21 (56.8)	0.17
111 patients with f/u		Intensive BP control	16 (43.2)	21 (56.8)	22 (59.5)	0.16
MRI		Mean home BP				
		Mean home SBP, mm Hg	130 [7]	134 [14]	137 [12]	0.03
		Mean home DBP, mm Hg	78 [8]	78 [10]	82 [8]	0.09
Low BPV Middle BPV	High BPV	BPV				
(n=37) (n=37)	(n=37)	WML (whole forebrain)				
		Initial WML, cm ³	6.2 [7.6]	6.9 [12.7]	19.4 [33.9]	0.03
		Follow-up WNL, cm ³	7.2 [11.3]	8.2 [12.7]	28.1 [50.0]	0.02
ļ		WML growth volume, cm ³	0.9 [7.5]	1.3 [5.0]	8.6 [22.8]	0.02
		WML growth	17(50)	21 (61.8)	31 (83.8)	0.001
WML growth N	o WML growth	WML growth > 10% baseline	14 (37.8)	19 (51.4)	28 (75.7)	0.001
(n=69)	(n=(42)	WML (ipsilesional forebrain)				
		WML growth volume, cm ³	0.9 [7.5]	1.3 [5.0]	8.6 [22.8]	0.02
		WML growth	17(50)	21 (61.8)	31 (83.8)	0.001
*		WML (contralesion forebrain)				
		WML growth volume, cm ³	0.05 [0.30]	0.03 [0.12]	0.02 [0.60]	0.732
With NIL (n=15)	Without NIL (n=96)	WML growth	2 (5.4%)	6 (16.2%)	9 (24.3%)	0.024
(11-23)	(1-50)	New ischemic lesion	2 (5.4)	2 (5.4)	11 (29.7)	0.002

Figure 1. Study profile.

Am J Hypertens 2019 Aug

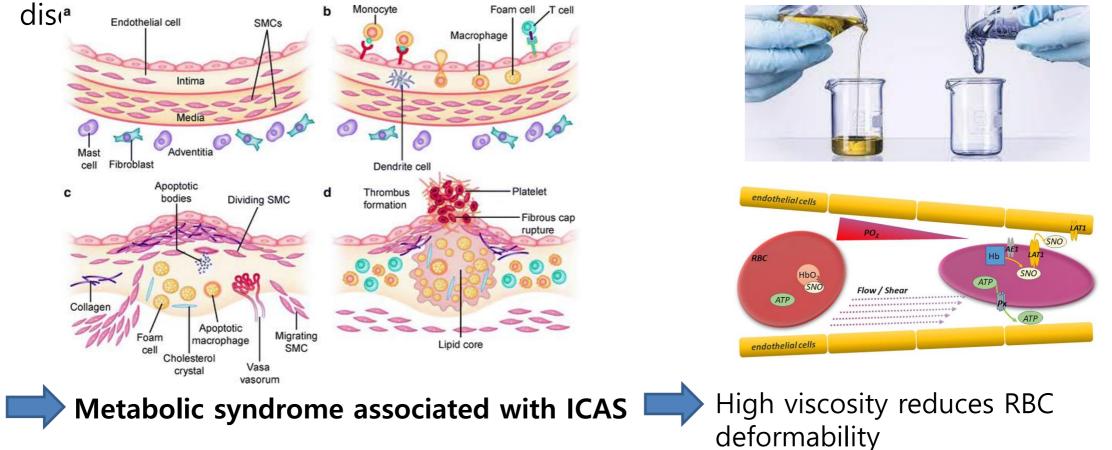


BPV and stroke

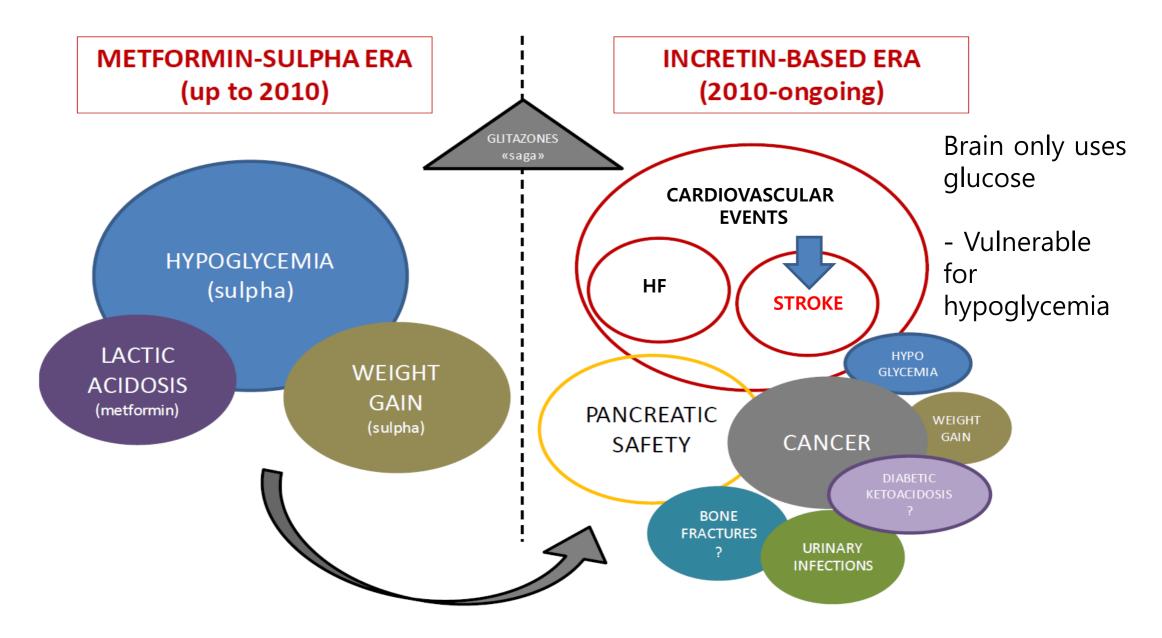
• Data extraction from ASCOT and ALLHAT

Table 4 Recurrent Stroke Outcomes by BPV-SD Quartile, in the Cohorts of Patients Who Had a History of Stroke or TIA (Table view)

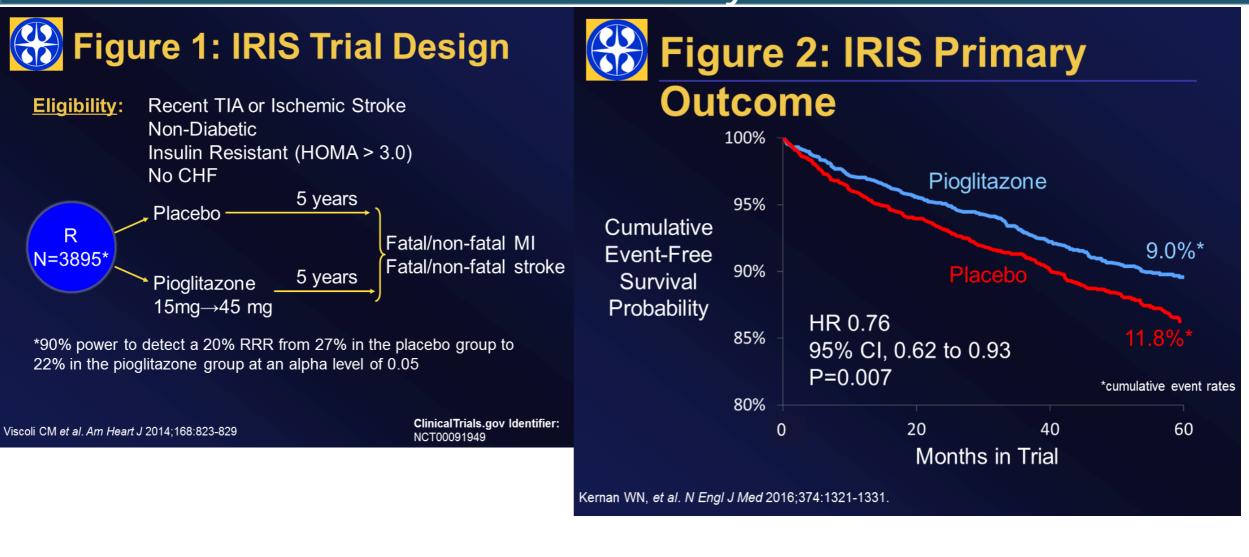
	ASCOT (N=2046)		ALLHAT (N=2173)			Pooled
	Amlodipine (n=1014)	Atenolol (n=1032)	Amlodipine (n=604)	Chlorthalidone (n=990)	Lisinopril (n=579)	- (N=4219)
First quartile						
No. of patients	334	178	163	277	104	1056
Recurrent stroke/TIA	31 (9.3%)	23 (12.9%)	6 (3.7%)	15 (5.4%)	9 (8.7%)	84 (8.0%)
Second quartile	·	•	·	·	·	•
No. of patients	297	214	165	244	134	1054
Recurrent stroke/TIA	24 (8.1%)	22 (10.3%)	11 (6.7%)	22 (9.0%)	11 (8.2%)	90 (8.5%)
Third quartile	·		·			
No. of patients	220	292	136	246	161	1055
Recurrent stroke/TIA	30 (13.6%)	31 (10.6%)	10 (7.4%)	15 (6.1%)	10 (6.2%)	96 (9.1%)
Fourth quartile	·	•	·	·		
No. of patients	163	348	140	223	180	1054
Recurrent stroke/TIA	26 (16.0%)	65 (18.7%)	9 (6.4%)	27 (12.1%)	16 (8.9%)	143 (13.6%)
Totals	·	•	·	·		
No. of patients	1014	1032	604	990	579	4219
Recurrent stroke/TIA	111 (10.9%)	141 (13.7%)	36 (6.0%)	79 (8.0%)	46 (7.9%)	413 (9.8%)
1st vs 4th BPV quartilea	<i>P</i> =0.029	P=0.094	<i>P</i> =0.272	<i>P</i> =0.007	P=0.946	<i>P</i> <0.001


The risk of recurrent stroke increases with BPV regardless to medication type

JAHA 2018 Dec 18;7(24):e009480

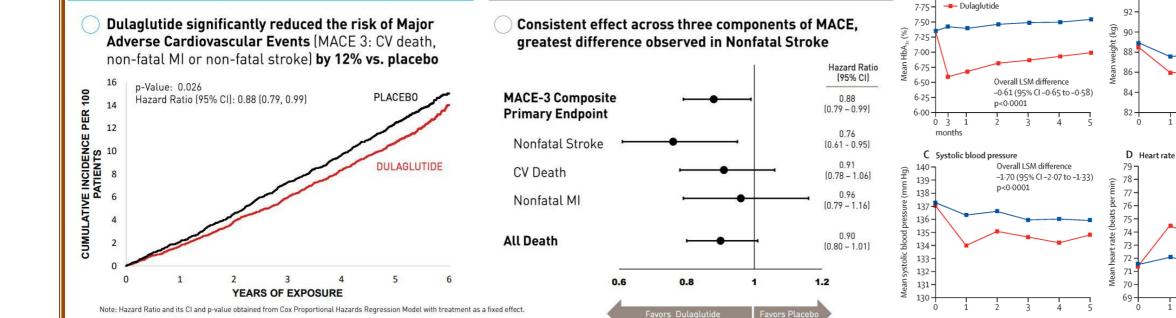

Diabetes

- Of 20 % of stroke patients have DM
- DM accelerates atherosclerosis



DM and small vessel

IRIS study


However, problem of weight gain, increase in fracture

REWIND study

PRIMARY MACE 3 RESULT

CV OUTCOMES

Gerstein et al. Lancet 2019

A HbA

---- Placebo

Study visit (year)

8·00 T

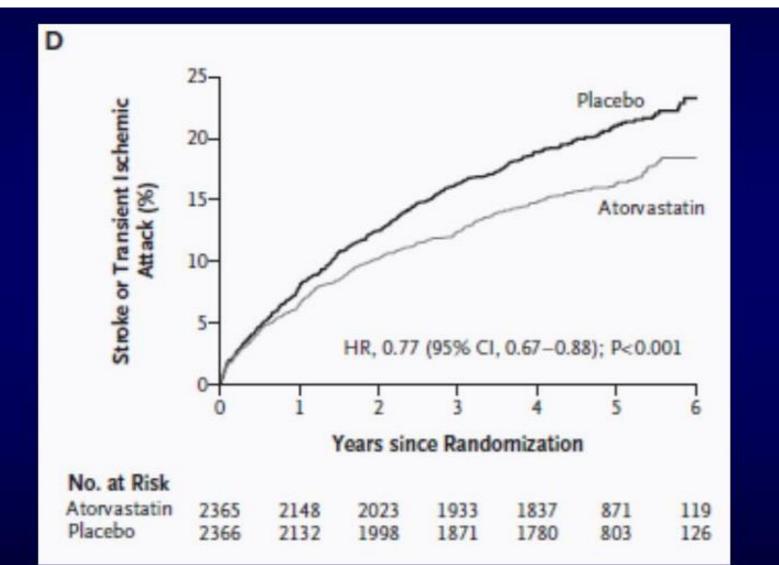
B Weight

Overall LSM difference

p<0.0001

-1.46 (95% CI -1.67 to -1.25)

Overall LSM difference


p<0.0001

Study visit (year)

1.87 (95% CI 1.62 to 2.11)

94-

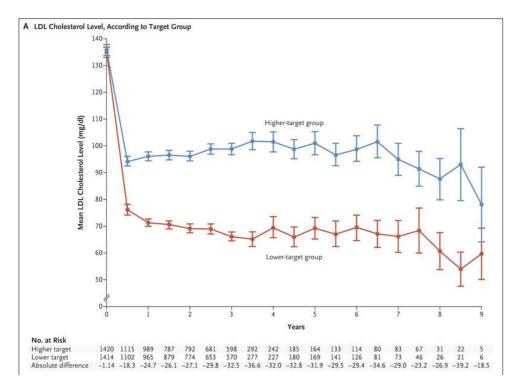
Amarenco P, Bogousslavsky J, Callahan A, 3rd, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med 2006;355:549-59.

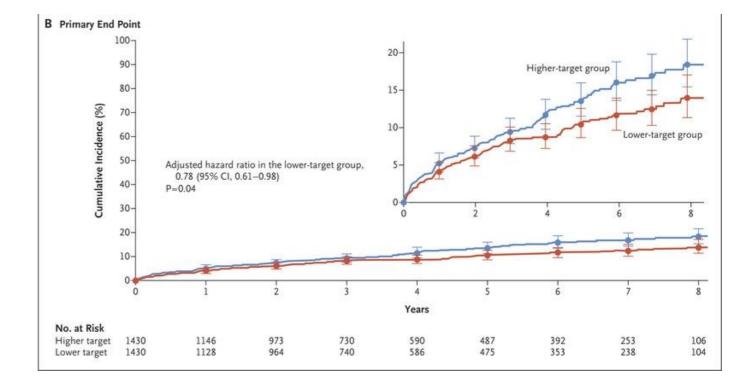
Statin use in the acute phase may positively influence short- and long-term outcome

Multivariate analysis: Efficacy and safety of statin use in the acute phase of stroke

	Statin use in the acute phase		Adjusted analysis	
	Yes (n = 839)	No (n = 1,233)	OR (95% CI)	p Value
Short-term efficacy (at 7 days)				
Neurologic improvement	632/832 (76.0)	773/1,223 (63.2)	1.68 (1.26-2.25)	<0.001
Major neurologic improvement	422/832 (50.7)	500/1,223 (40.9)	1.43 (1.11-1.85)	0.006
Long-term efficacy (at 30 months)				
Favorable functional outcome	523/746 (70.1)	576/1,098 (52.5)	1.63 (1.18-2.26)	0.003
Excellent functional outcome	402/746 (53.9)	438/1,098 (39.9)	1.28 (0.94-1.73)	0.121
Short-term safety (at 7 days)				
Neurologic deterioration	42/832 (5.0)	176/1,223 (14.4)	0.31 (0.19-0.53)	<0.001
sICH	10/832 (1.2)	47/1,222 (3.8)	0.52 (0.20-1.34)	0.176
Long-term safety (at 30 months)				
Death	43/746 (5.8)	166/1,098 (15.1)	0.48 (0.28-0.82)	0.007

sICH, symptomatic intracerebral hemorrhage


Ref. Cappellari M, et al. Neurology 2013;80:655–661.


2019 AHA/ASA Guidelines for the Early Management of Patients With Acute Ischemic Stroke

In-Hospital Institution of Secondary Stroke Prevention

< Treatment of Hyperlipidemia >

Timing	CO R	LOE
1. Among patients already taking statins at the time of onset of ischemic stroke, continuation of statin therapy during the acute period is reasonable.	lla	B-R
 For patients with AIS who qualify for statin treatment, in-hospital initiation of statin therapy is reasonable. 		C-LD

Controlling LDL cholesterol under 70mg/dl reduces cardiovascular event in stroke patients

Conclusion

- Obesity is associated with stroke
- Stroke is a disease of heterogeneous mechanism
- Different approach may be needed according to stroke mechanisms
 LAA
 - DAPT \rightarrow mono antiplatelet agent (Considering risk benefit)
 - Lowering BP under 140mmHg is reasonable, but with individual approach
 - Acute stage: high potent statin, \rightarrow LDL under 70mg/dl
 - SVO
 - DAPT \rightarrow mono antiplatelet (with less bleeding complication)
 - Lowering BP under 130 mmHg is reasonable
 - LDL lowering may be considered

