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MYPT1-PP1f phosphatase negatively regulates both chromatin
landscape and co-activator recruitment for beige adipogenesis
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Lifestyle diseases involve both genetic factors
and environmental factors

Environmental Genetic
factors factors

@ ) l | Diabetes
@ Dyslipidemia

Hypertension



Environmental stimuli

Chronic cold
stress

Adapted from
Nature 2009

White fat Beige fat

Epigenomic changes Changes in cellular function

Changes in cellular functions



JMJD1A (Jumonji domain-containing l1a)

-Histone H3 lysine 9 di-methylation (H3K9me2, repressive histone mark)

specific demethylase

H3K9
ARTK K <
12345678 9....
4 Histone H3 tail
JMJID1A

-Turn ON gene transcription by removing repressive H3K9me2 mark

® Histone demethylase
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JMJD1A promotes beiging through signal sensing (15t step) and
epigenetic re-writing (2"d step)

@ Phosphorylation at S265 by PKA

W hite fat
Repressive histone ) ]
mofications Signal sensing
@eoooooo @ 1st ste
. e | £as)
/
:%: ChronV
: J Epigenet(ijc re-writing
n
\ . . (2"9 step)
SA
Beige
fat cell TXN

Epigenetic change: Quality change
\. J
Abe'Y, et al,. Nature Commun (2018)

It has been challenging to artificially activate Step 1 JIMJD1A phosphorylation and induce Step 2
epigenomic reprogramming to promote beiging




Hypothesis:

Is it possible to enhance demethylation efficiency (2nd step)
by inhibiting the phosphatase activity toward phospho-JMJD1A (1st step)?

4 PKA ¥ il

L
SCWAT
PKA 11

1 phosphorylation
(Step 1)
@

K DNA ; /
TXN Ucpl SCWAT: subcutaneous

white adipose tissue
TXN: transcription
PKA protein kinase A

= Negative
regulator

®  H3kIme2

demethylation T




MYPT1-PP18 : JIMJD1A phosphatase

LC-MS/MS
MYPT1-PP1B is identified as an interacting protein of JMJD1A Ph osp ho-immunoblot
JMJID1A phosphorylation level is increased
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MYPT1: Regulatory subunit
PP1[3: Catalytic subunit




Inhibition of MYPT1-PP1 promotes epigenome rewriting and induces beige adipogenesis

=

Preadipocytes
from scCWAT

si-Myptl+

si-Ppplcb @

gPCR

Beige
adipogenesis
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SCWAT : subcutaneous white adipose tissue
TZDs : thiazolidinediones
H3K9me2 : repressive histone mark
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H3K9me2 demethylation
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Beige adipogenesis



Question:
Is MYPT1-PP1p activity inhibited or upregulated under cold stress?

3%& Chronic Cold Stress

'

B-AR

No change? =

Activated? -)

Inactivated?-\

JMJD1A



MYPT1 is phosphorylated at Thr694 in response to -AR activation

Non-selective
B-AR agonist

@ , *Phosphoproteomics
*Immunoblot

Preadipocytes
from scCWAT

Phospho-proteomics

MYPT1 is phosphorylated by B-AR stimulation B_AR
o
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B-AR: B-adrenergic receptor



Upon B-AR activation, MYPT1-PP1 is inactivated, leading to the induction of beiging

Phospho-immublot
Impaired induction of JMJD1A phosphorylation by B-AR stimulation
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' The phospho-defective MYPT1 (T696A) is active |
| —dephosphorylates IMID1A, resulting in impaired beige adipogenesis '



Exploration of transcriptional pathways regulated by MYPT1

Log2 relative phosphorylation
(si-Mypt1/si-Ctrl) in Exp 2

TEAD motifs are enriched in the upstream of

Phospho-proteomic anlysis

Log? relative phopshorylation
(si-Mypt1/si-Ctrl) in Exp 1

RNA-seq
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Lin KC,et al,. Trends Biochem Sci, 2017

"TAi/S?A
YAP/ TAZ| ETEA E
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YAP/TAZ:

- Mechanosensitive transcriptional co-activator
*Regulating actomyosin tension-mediated gene transcription

' Question:
| Is the pRLC-actomyosin-YAP/TAZ transcriptional pathway involved in the regulation of
| thermogenlc gene expression by MYPT1?



PRLC-actomyosin-YAP/TAZ transcriptional pathway is crucial for the
thermogenic gene regulation by MYPT1

WT or TA/SA-RLC

overexpression Beige
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Blebbistatin: an inhibitor of actomyosin tension



Question:
Do the epigenomic pathway and transcriptional pathway crosstalk?

Epigenetic pathway Transcriptional
pathway

Q MJD@ ( RLC )
A W W

fw

PK

?
|
2 =
. T DNA Y __
: regulatory myosin light chain Thermogemc genes

MYLK: myosin light chain kinase
MYPT1/PP1p: phosphatase for P-JMJD1A



Induction of thermogenic gene expression by MYPT1 inhibition
requires prior removal of repressive histone mark by JMJD1A

RNA-seq of Mypt1l-KD & JMJD1A ChlP-seq
JMJD1A s enriched in TEAD motifs on genes upregulated upon MYPTL1 depletion Y N .
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Question:
Ameliorating effects on die-induced obesity and glucose intolerance?

Adipose tissue-specific
MYPT1 KO mice

Sm/

M ypt 1 +/flox
Mypt1+7ex::Pdgfra-Cre

HFD



Adipose tissue-specific MYPT1 KO enhances beiging,
leading to improved obesity and glucose tolerance

M ypt 1 +/lox
Mypt1+fox::Pdgfra-Cre

NCD-fed Increased thermogenic gene expression

Increased UCP1protein levels (QPCR, SCWAT, RT)

[=2]
[=)]
(IB. 12°C for 1 wk, SCWAT) oy
o
P=0.0419 i o 2 =3 Mypt1*ex
25+ LO c % g s g & = Mypt1+ex::Pdgfra-Cre
> 2120 o . o. o - o, . . .
‘B A PO R B o ; '
g 21 ® 70:‘ I S~ - U S R ;
2 '5.204 R L S S g 1
=15{® 5 10 T R - R T =TS
g < 4o Mol T T TR T T2 o
2 1 x 3 S ) 1 -3 S
[1}] S o ' ' *- In o
é [ 2 : ' 30 : Q‘i I
J0.59 2 1 ] | | R D h 3 |
o ® AL :
o g 0 ! ‘
“ 3 8 8 3 2 g & ¢ § P %
o o = S 5 = © < x @ a
S 8§ £ B =
S 6 8§ 8 @ ° @ & 8 & =

Improved die-induced obesity Improved glucose tolerance

O Mypt1+ex @ Mypt1*™x::Pdgfra-Cre (GTT)
50
Mypt1+/ﬂox :T
Mypt1+7ex::Pdgfra-Cre = 401 2
- =
= £
30 A )
> 204 =
HFD, RT g 5
10 1 (_O) O Mypt1+/ﬂox
0 = 0 O Mypt1+fex::Pdgfra-Cre
024 6 810121416 0 30 60 90 120
Weeks on HFD

Time (min)

Increased UCP1-positive beige adipocytes
(UCP1 staining, SCWAT, RT)

Mypt1+/iox Mypt1+7x::Pdgfra-Cre
BF . PR E ; 32 S
*f % { ::‘té’ Py

a-UCP1

Low fasting insulin levels
P =0.0029

1500 s
18 =1 Mypt1+ex

= Mypt1+"x::Pdgfra-Cre

o @
o]

1000

500

Fasting insulin (pg/mL)




Summary

A - L4
?%éChronic*Cold Stress -,Q;Thermoneutral
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channel‘? PKA channel?

IJMJD1A l RLC Jr
YP'\H\ MYLK ’f@ VvLE

FJB/ S
JMJD1A RLC
Epigeneti&l_,‘ KTranscri i
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‘ — — —p DNA
\_ UCP1 VAN v
Thermogenesis ON Thermogenesis OFF

Takahashi H, et al,. Nat Commun. 2022

——— e e —

' - Stabilizing IMJD1A phosphorylation by inhibiting MYPT1-PP1 induces beiging by promoting
epigenetic rewriting, ultimately improving obesity and energy metabolism

-We elucidated a concerted mechanism of thermogenic gene activation mediated by epigenomic
changes and transcriptional coactivators in response to cold
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i - 9nd
(phosphorylation;1st step) (demethylation; 2" step)

We explored the way to enhance demethylation efficiency (2" step)
by inhibiting the phosphatase of phospho-JMJDI1A (15t step)?

Cold stress Q& Takahashi H et al Nat Commun 2022
B-AR
i -
4 PKA inhibition
PKA Protein phosphatase = negative regulator
SCWAT _
T phosghoryllatlon ® ® L3k9me2
@g tep 1) demethylationt
@% : (Step 2)
DNA —
K TXN Ucpl P /

TXN: transcription
PKA protein kinase A
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SM relaxation
Cell migration
Cell adhesion

Xia D, et al. Exp Cell Res 2005
Cohen PT, et al. J Cell Sci 2002

< MYL9

1e Nterminal
that P-MLC20
kyrin repeat
sociates with

< PRMT5

Tumor suppressor
genes expression

Sipos A, et al. Sci Rep 2017

3P < PLK1 3

VA
/

I MYL9: Myosin regulatory light polypeptide 9 1
I PLK1: Polo-like kinase 1 1
I SNAP-25: Synaptosomal-associated protein of 25 kDa |
! HDAC7 Histone deacetylase 7 1

Neurotransmitter Thymocyte

Release Apotosis
Horvath D, et al. PLoS One 2017 Parra M, et al. Genes Dev 2007

T_SNAP-25 > P T _HDAC7

p

f%\

Pi__ JUN D

Angiogenesis

Lin ZY, et al. Mol Cancer 2017

Mitotic arrest

Yamashiro S, et al. Dev Cell 2008

)

\0
10

__RD

Cell cycle

progression
Kiss A, et al. Cell Signal 2008

T IRS1T O

Insulin signaling
Geetha T, et al. J Endocrinol 2012

' PRMTS: Protein arginine N-methyltransferase 5
Rb: Retinoblastoma-associated protein
JUN: Transcription factor AP-1

LIRSl: Insulin receptor substrate 1 I



Background 1: EXFUBRAFIVIEEESR
Jmjdla

- BRFEICWEL Jumonji C (TmjC) FAL>, Zn finger EF—I7%EHT 5.
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JMJDI1A Is a sighal-sensing epigenetic factor phosphorylated by kinases
activated downstream of environmental cues

Environmental cues: |Cy10kine| [Hypoxia] [Starvation] [Satiety]
wskil  Pral oAz \Ackt | | |

pS264 pS265 pY1101 pY1114 PTM? PTM? PTM?

I
; >
I
¥ o Znfinger  LXXLL
: 1 oY% P : PG 1,321
 NH, L[y~ COOH
: 1058 1,281
I

662-687 B885-889

' } ' AR,

Heat shock Thermogenesis  Cell growth Glycolysis Starvation Appetite
response response? supression?

Matsumura Y, et al,. J Biochem. 2022
013123 021023 Done by Takahas



JMJD1A is phosphorylated at Y1101 by JAK2 upon cytokine stimulation and functions as a STAT3-
dependent transcriptional coactivator, leading to cancer cell proliferation

Cell proliferation

0 C motility
A =, Kim H, et al,. Proc Natl Acad Sci U S A. 2018

ENS_ID B BLE] DO_Rosi+ RPK D4 Rosi+ RPKJE D8 Rosi+ RPK RNV Al T M M DS WT_a_RPKIG D8 SA RPKEJ D8 WT_b_RPKIEE D8_SD_RPKv
ENSMUSGO0000019907.8  Pppirl2a 17.3077 6.56639 3.50683 12.9623 9.31109 5.91135 9.29345 10.6967 11.5268 11.5667 12.4179
D8—Empty D8-shJdmjdla
|Gene D¢~ [Probes +|Gene ID__|-T[0h ~[1h ~ |2h - |oh ~|1h - |2h -
Protein phc1429487_at Ppplri2a 2448 269.7 240.3 299 284.6 266.9
protein phc 1437734 _at Pppl1ri2a 161 170 1521 180.9 168.8 181.1
protein phc 1437735_at Ppplri2a 395.8 420.6 346 452.5 418.9 430.8
Protein ph«1444762_at Ppplri2a 26.2 26.5 19.5 26.1 20.9 299

protein phc 1453163_at Ppp1r12a 34.7 30.2 34.7 39.9 38.6 36.2



FPKM of cell senescence markers in immortalized scWAT cells

‘ Not expressed in KWAT cells? ‘
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Day0 Day2 Day8g

Cells : Immortalized scWAT cells

P20 (2Abe@HTIBHTIBHT20) DMEM-+10%FBS Induction Maintenance

P32 ({2 Abe()AUTDAUEZIAU25HT32) 2.5nM siRNA
siRNA: NTC Med GC Duplex #2 3.3 x10° cells/well

siMYPT1 #3 (Invitrogen) (6-well plate)
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- Tendency for P32 cells to express higher levels of markers
- Tendency for siMYPT1 transfected cells to express lower levels of markers
(though Cyclo is higher in siMYPT1 transfected cells)




Primary scWAT cell
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Pdgfra-Cre:: ERa mice develop obesity
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Dear Takahashi-sensei:

I hope this e-mail finds you well. This is Chaoran Yang.

Recently, I read some more papers and found that it is a a long-stand idea that both Yapi/Taz (Wwtrl) are inhibitors of Pparg (and
activator of Runx2) and can inhibit adipogenesis by inhibiting Pparg while stimulating osteogenesis by activating Runx2. And a paper
published on Cell Reports in 2013 found that both Yap1 knockdown and Yapl overexpression can downregulate Pparg and inhibit the

adipogenesis of MSCs.,

Therefare, I think maybe the effect of Taz (Wwtrl) on Pparg and thermogenesis genes like Ucpl is also doze-dependent, as shown in
the picture followed. This hypothesis may help to explain why there are both reports that Yap1 can upregulate Ucpl (that Cell
Metabolism story) and Yap1/Taz can downregulate Pparg and inhibit adipogenesis. And, personally, I think maybe we can do a sh-
Myptl+Taz overexpression experiment to test if this hypothesis is right or not.

b OERBROIATXARTE. RY. BIFHREOME~NDEETR—221EIZE1{L
BHBHEVNSIKIEHRIEZITE LA TLI=, BEHIZ2005DsciencelZTAZIEadipogenesis
ZHNHIL . osteogenesisZIRET HEFE SN TEYET A, 20135 X & cell report TYAP
ZBEIFNIETL. /v95 90 L ThadipogenesislLiNE &AL, MildIZFIRL TLVB 8

Effect N\

on pparg | Because the doze

of Taz is too low,
the negative eff-
ect of Taz on Pparg
will decrease again.

Cell Metab. g sh-Mypt1
tensional

fzlFadipogenesish L E LV =R E L H
DEEMNELL. LDV THFRITIE

Y

sh-Myptl+sh-Taz
kWAT-D8

KWAT-DO

/

dose of Taz

sh-Myptl+Wz overexpression?

Thank you for your attention. I have also attached the three articles mentioned for your reference.

Kind regards,
Chaoran Yang

Y. LM LFET EAEKRFMICadipogenesis™~
FENRZI>F=DOhELNFEEA,
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Tendency for siMYPT1 transfected cells to express lower levels of p19ARF
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Posttranslational modifications of proteins such as phosphorylation and dephosphorylation

are known mechanisms that operate as a ‘molecular switch’ to either promote or diminish
insulin signaling. Once the IR is activated and appropriate tyrosine residues of IRSI are
phosphorylated (Venable ef al. 2000), IRS1 interacts with p85 and Grb2, which are affiliated
with the PI3K and MAPK pathways, respectively, leading to the activation of a number of
downstream kinases, such as Akt/PKB, mTOR, S6K 1, GSK3, and MAPK. These
downstream kinases can phosphorylate site-specific serine/threonine residues of IRS1, in

which most of these phosphorylation events result in reduced insulin action (Gual e al.
2005, Sun & Liu 2009, Siddle 2011). Surprisingly, little is known about the role of serine/
threonine phosphatases in IRS1 phosphorylation and insulin-signaling transduction.

Yes-associated protein (YAP) and TAZ (WW domain containing

transcription regulator 1, or WWTR1) are paralog
transcriptional regulators, able to integrate mechanical,
metabolic, and signaling inputs to regulate cell growth and

differentiation during development and neoplastic progression.
YAP and TAZ hold common and distinctive structural features,

reflecting only partially overlapping regulatory mechanisms.
The two paralogs interact with both shared and specific
transcriptional partners and control nonidentical
transcriptional programs. Although most of the available
literature considers YAP and TAZ as functionally redundant,
they play distinctive or even contrasting roles in different
contexts. The issue of their divergent roles is currently
underexplored but holds fundamental implications for

mechanistic and translational studies. Here, we aim to review
the available literature on the biological functions of YAP and

TAZ, highlighting differential roles that distinguish these two
paralogues.

The osteoblastic and adipocytic lineages arise from

mesenchymal stem cells (MSCs), but few regulators

of self-renewal and early cell-fate decisions are

known. Here, we show that the Hippo pathway

effector YAP1 is a direct target of SOX2 and can

compensate for the self-renewal defect caused by

SOX2 inactivation in osteoprogenitors and MSCs.

Osteogenesis is blocked by high SOX2 or YAP1,

accelerated by depletion of either one, and the inhibition of
osteogenesis by SOX2 requires YAP1. SOX2

favors adipogenesis and induces PPARg, but adipogenesis can only
occur with moderate levels of YAP1.

YAP1 induction by SOX2 is restrained in adipogenesis, and both YAP1
overexpression and depletion

inhibit the process. YAP1 binds b-catenin and

directly induces the Wnt antagonist Dkk1 to dampen
pro-osteogenic Wnt signals. We demonstrate a
Hippo-independent regulation of YAP1 by SOX2

that cooperatively antagonizes Wnt/b-catenin signals and regulates
PPARg to determine osteogenic

or adipocytic fates.



Major comment 6: The authors suggested that MYPT1 would play suppressive roles in preadipocytes, not in mature beige adipocytes, which was
supported by Adipog-Cre Myptl KO mice model (Supplementary Figs. 5f-i). However, given that PKA signaling, IMIJD1A, and MYPT1/PPT1beta are also
present in mature adipocytes, appropriate explanations of the different roles of MYPT1/PPT1beta in preadipocytes and adipocytes should be provided.

Reply to major comment 6: We thank the reviewer for their valuable comments. As per your comments, MYPT1 exerts its main action on JMJD1A
during beige adipogenesis. During this period, JMID1A erases the repressive H3K9me2 from thermogenic genes, converting silenced chromatin to
open chromatin, and thus activating transcription. Phosphorylation of JMJD1A forms a -specific complex with transcription factors and nuclear
proteins, such as PPAR, PGCla, and PRDM16, to determine the specificity of the target genes (Abe Y et al, Nat Commun 2018). Thus,
phosphatase MYPT1/PP1p, which removes this phosphorylation, acts as a repressor during the demethylation period. However, once H3K9me2 is eliminated
and beige adipogenesis is completed, JMJD1A is no longer needed and MYPT1/PP1 no longer exhibits a repressive function.

With regards to Adipog-Cre::Mypt1fovflox mice, they do not exhibit thermogenic phenotype, suggesting that phospho-JMD1A does not promote
trans-differentiation from white mature adipocytes to beige adipocytes.

In addition, as a preliminary experiment, primary cultured SVFs were prepared from scWATSs of Mypt1fioXfloxmice and infected with adenovirus carrying
Cre recombinase (Adeno-Cre) on the day before (Day 1; pre-adipocyte stage) or seven days after (Day 7; mature adipocyte stage) differentiation to eliminate
MYPT1. After differentiation, adipocytes were harvested on day 8 and thermogenic gene expression was examined. The results (Fig. 3 only for reviewers)
showed that the expression of thermogenic genes was higher in cells infected on day 1 than in those infected on day 7, suggesting that Mypt1 depletion does
not affect the transcription of thermogenic genes in mature beige adipocytes, but only early in differentiation. We acknowledge that this is not a perfect
experiment, and there are limitations in the interpretation; however, the results are consistent with the model and it will require significant future studies to
clarify these points.
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Primary preadipocytes isolated from SVF of SCWAT of Myptlﬁf”"%'OX mice were infected with either AXCAN-LacZ (adeno-
LacZ) or AXCAN-Cre (Adeno-Cre) that expresses the LacZ and Cre recombinase gene, respectively, under the control of
the CAG promoter for 24 h on one day before differentiation (Day -1 infection) or on day 7 (Day 7 infection) during
beige adipogenesis. mMRNA levels of thermogenic genes, general adipogenic genes, and Myptl on day 8 of differentiation
were quantified by RT-gPCR. Data are mean = SEM of three technical replicates.



Mypt1 deficiency did not influence Ucp1 levels by chronic cold stress in BAT, indicating that MYPT1 may not be essential for BAT thermogenic function at least
during the chronic phase of cold adaptation. However, it is also possible that the 50% reduction in MYPT1 was sufficient to reveal a phenotype due to
reduction in scWAT but not in BAT where basal levels of Ucp1 are already very high. i§ I8 #8452 AIMYPTIKOY D R DBATHE KU IEEME TMYPTL/ v
A D LEBARTI =R MRIHMEDREA B R FREFEICEFHERINFLATLZ, LAL. WINDOERICHROTEMYPTIOR A (F50%FEE T
Hot=f= &Ydrastic CIMYPTIZEFD S B THIFHIENTENILENRZ WA ELNFEE A, 2015F(2H) VB IEIMIDIAIZ R F v RILT 42T 22X
DELTHRET AL TRARTIZ A MBI DR ELE EGCFREFEICAE T ALEHMELTHBYET DT, FTIRF LU DIRAMNYAP/TAZELE
BERENLTBATRELICEAE 5 LL|MESN TS5, IMIDIAY U EEIE ERLCY U ERE I IS AMYPTIABATICHE LN THEREL TLVHRTRETE T+
DHYIBDERNET, (tharpD &)

sSCWATTIE/ATF AL T ST26MYPT1 KDIZ & HIMIDIADMEREE ML (X drasticl 7T /24 T IZHE T 5—Ar. BATCIE TR BAE L B FEEIE
F—TU T, TARUCPIEIRAE L IBATTIF IMIDIA axis hANEMHAL SN TH, HDEERBRDOF 5I1TELN TaUCP1DBMIE R IV \OMLLAFEE A
Question 1: In other tissues where PKA signaling is activated, do you think MYPT1 and JMJD1A is phosphorylated and similar downstream signaling

is activated?

Answer: IR TLAERL TOERAMMID RBRBREIE SN TOSREITBVTERTRLFIUEZERHS T FIIL TR TIMIDIAAY VEEEEN, Th
[CMYPT1AEIM T DB FEL TV AN ELNFER A A= EDIAVTERIMIBNTIE, YU BEIESNT-IMID1AIZPRDM16,PGC1A PPARGEL Y
FEERF . RERAEERFLMAEERTHILT. REAERFORREHELES A, OB, FEICBEVTEZA TN OMBBIFENGEERF. 65
HERFEHEMERTILT. RENGEGTFORBRFEHICEASLTLSDNELNER A, 2V TF X hdependentTHIBEICO T 7783 —MEHH>THE
ENEHD

Question 2: What is the biological significance of inducing actomyosin tension in beige adipogenesis?

Answer:

Thermogenic adipocytes maintain an extensive cytoskeletal network that supports and organizes multilocular lipid droplets and numerous
mitochondria, whereas white adipocytes are

comprised of a unilocular lipid droplet. we hypothesized that brown/beige adipose generates cytoskeletal stiffness requisite to maintain or promote
differentiation status.

N—Ta Bl E. EEMEDREE IV T FEEETHY . TIORSA O UERNIFMUR) 7O A XM, MEFICREERITTEVLOHED
HYFET ST COBEEZHMBIHRTL A=D1 BRBEHIF I H-OIC. TIRF LU DT AV ARELZOMLLAFEE A,

Adrenergic stimulation has also been identified to promote mitochondrial fragmentation in brown adipocytes (Wikstrom et al., 2014), which leads us to
postulate that mitochondrial dynamics may require mechanical support from actomyosin. Actin dynamics have only recently been identified to
modulate mitochondrial function in mammalian cells (Beck et al., 2012), and ER-associated mitochondrial divisions appear to require force generated
by the actin cytoskeleton (Hatch et al., 2014; Korobova et al., 2013). While our data suggest a significant role for mechanoregulation in mitochondrial
function during thermoregulation, further study is necessary to establish a mechanistic explanation of how respiration is regulated by cellular elasticity

Here, we analyzed the impact of actin on neuronal mitochondrial size and localization, F-actin enhanced mitochondrial size and mitochondrial
number in neurites and growth cones. In contrast, raising G-actin resulted in mitochondrial fragmentation and decreased mitochondrial
abundance. In this study, we demonstrate that SRF-cofilin-actin signaling affects mitochondrial dynamics (i.e., size, subcellular distribution to
neurites and growth cones, mitochondrial energy metabolism).

. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for
preconstriction and secondly, by serving as a coincidence detector for Drp1 binding
MYPTLEGEFDEENANETIEHFOMELMBELTOENEINEVNIDIFREEKRNECATY D, FLASTOVEVDTEFSROBELSE
TIEEVTY  (MYPTLET7IRSA L URAZ N LI-HBaHEE (CEBEH OUHE) (CRE5 T 516 EEAARELE)—HILIZEY DRG]



BOBELE., BAFKUIEL L EEFREUBEELL) ORY . BEFEUBEL (T (CBEEHEM (brown adipose tissue; BAT ) 8-> T3, Chf T—RMIC. BE
BERIC L ) REMRRANEREE NS Z X TBATRVEEHNTTET A EEZ SN TEEN, BlZE. ¥EBZD) bXEMRREZEF LT 2D ERKEYPDOAH TH % Z & 3ELH
BAREPEMETI Oy LTHEBRRHOHEE I TELRVI LR Eh L, YOS FEEBICETALEN S, 1z, TESE. ATA5I LT TERLC, BERIZEST
MBI NABILERINE Y NBEEBATEEMELT 2D TEEVNEEZ. BRIEARAT-,

FUBHICEESIF. BATELBIABILLEANVE VU ZREROREIBAMKREIL., /L FUoSBREOEBRNREL TEVI AR & o1z, RICHRIEEBREIERMIEE BV T,
7 UF Y HUCPIURTEHDRAELEEBNICHFET 22 8. tOEREEILFUOSBMEMIEKET 2D, PPLF ) UFBERICEEFELBVI CEHESHAICLI, £zt
F I & BEEETTHE N CAMP-PKARIE A N T IEIDBICEKBET DI 8. S5 I L FrNERRNKRSICS > THAR Y R TIIAEENTTET 24, UCPIXIE~-T 2
TRZFOHREDBHOSNE VNI X ERL T,

mFE+ oL F U EEGEETRTULABIERETCHEEIC LA L. BATREMHEALZ, LI Ss 2 L FUKRENERBERICOANZ2 /LN T WD, FEES LI O
RHAMUCPIXIEY I ATRBERTACEERL. LIV FUNBATREA AN L TREAFERIRZRIBIS 2Bl IC LIz, 2L FoE5E MERTEICH WL TEEN
(LB < POMCEIRA1EINE 2L & b (2, BREECH CAGRPEERZ B S B4, UCPIRIBYIATRINSDZTILIERD S N 12, 2L F 2 IEBRENPOMC=
A—OVICHRTBTRPVIOER b ERS - e h b, BATRELL L3R LR #TRPVINZEM L. POMC= 1 —0O UANEMIL SN B & TEMINHIC DA D BEMNR
®ahi.

FESEFSSIC. LIV FUILHT 2HhANGEOKXENBEFHOBATE LR 24 L. BEEREAIEMITH I, W ILF LTI a2 BB Y RIKRET 52
ET. —BHCIANVY—HENTET S EHRLIZ, EEMIBNTE, BRIBZOMBEELILFULERLALDN, BEIRILE—HEEE L LI UBATNDIBHEREL Y A
BEDIEMEIFICHRET 22 AR, EO2 L FUALBATRAEEZN UL THERC DENARIEAYIR, E P TREI N TWEZ L AHRLT,

Bt B CEERMEER A ) CBICEBEEEEREUN L PRBAENEL W E RN E T HAMYPTL-IMIDIAE A D =R TigiE & 4T LIMID-AtoMYPT1 D 48
BEEREHENCEET A/NDTEBET A C LN TENEIMIDIAD ) YL EZFENCIEMNI 5 C & ATENIE, IMIDIA-S265Y) U EREIZES LY —
HOT, BARBICKELTFIVEEEL, AEEBCTFORENEEEEERTESIANL LR VET, 706 IV UBREN LU LMBMECHKELTLES
DTEMEEANBEBCLZ->TLEINELILEE A

FZEICMYPT1ZEEL TH(pan-MYPTLEER) 7 V24 U B EN L= MR EEA TAE SN EIEA, g9afAEFIL £ TDg9aZ— Y MELRF TEEMNH LA,
JMJID1A-s265") VER L E IR TENIL, BEE BT FOAHEFEHEILTES,

adrenergic stimulation leads to both increased lipolysis and thermogenesis. A— 1 0B BIEIF~NDSNSOb—2 1, BEICKUEML. bARMEM LS, BEH
BREANEESLEEDONIN, BEFERELIIDAREN T HD T, cold induced thermogenesis&@#%I1Z. BEFEHELE(CEVTERBEDEETMYPTI-
IMIDIADHEREL TLNBEEZ BN D, ColdiZA5hY, dietl2A5ANAD 7 IZ K DbARDEMHLED T, EARMICRILKIBTRAIHKDOMN ? hTaAFIVFEITTHL B
BRI+ BB OSHRN S BINLHEELERILEVEILFULBEEFEMRELICAE T HIENRESN TS, UL FUITKDREETTEN CAMP-PKARR IR
ENT DN RIIKETHELSIET, BILFUZRARD TR TERIESNIZPKAIZELY. cold-bAR-CAMP-PKAD IS A LRIBREHEENLT. BEFEHMELIC
IJMIDIA-MYPTINBEE T 5 EEMEEEZ 5N D, HLLE, HSLOUUERIEEMYPTLIAHIEIL TLVS (BRI TH A M ELNBRLAFISAEL) A, F=(ZIMIDIAKS
YAP/TAZIZ &Y lipolysisBiE B FAHEHINDFZEIZIE. UL FUIBED TR TEMILSN-PKAIZKSEM A BRENL-RELICLEETHMELNAEL,
LALMYPTIKOY IR TREBFEMHBEENTTELTOIHNESINIEREEL TR,

Lipolysis/ZbARMDEMH L T, FE SN B H. PKA—pHSL axisTHIEESNB1=6 . IMDIA-MYPT1®D LRE LI AL TOHOREZRTHY. HlZIEX. MYPTL KDT
lipolysisIZE2 &9 5L X, IMIDIAXOYAP/TAZIZ &Y lipolysisBE:&EEmF A HlEI S Hh (FELKHEREL TULVELY) L HLLIEHSLD ) U EEEMYPTLAMHIEIL TLVS (

BHTHODDLNGENIHSGL DENFEITEDMERS E5(2, KFEAMS IMIDIA Z9UI-#ERa3E B A0SO TE S/ L RNA {5 8h8

: DR FEBMNEASIN 22ET, HIEEEDRFEIZMEL T IMIDIA Z5EMHET
LEXIOEREMENEZOND, BEE(X. Ch FTIZIMIDIA DIIHEIRFELTH
YUBLEERDAGT YT 1=vbTHD MYPTI ZHEHELTHY . Z hOEEHIA
JMID1A BT BERICHYB/EEEZBND, £F-H3K9 AFILILBRTHD
G9A O FAEHEIX. IMIDIA DIEREE RS EIEHIZLLEEZLN., BFEO 2 B
HERARZIELHELI-ETEE BROABRELLTRRELBDEEZALOND

AV RV BEZENMYPTIKOTHET DD (E, A—D bR EIZKkY ., B RILARIAHREMN DA
Y. BEBEASRAER. TNFa, LY BEFU . Il oAV R VB ERERF (IRFOL X F+—EE
T XSPIBKDEEZHNF]) Om1v /0T 7— % EE T 57 EHAMCP1D B KL EE B fRAE M 5D
SRR L REAFY AR FILABEESING LIS ?
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Our analysis revealed negatively correlation

between JMJD1A expression and BMI, waist circumference, hip
circumference, serum triglycerides, and serum cholesterol
(Figures 7A—7F). This implies that IMJD1A may play a role in
enhancing energy metabolism in adipose tissue and potentially
preventing obesity in humans.
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Cold-induced Yes-associated-protein expression through miR-429
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Targeting the white-to-brown fat conversion is important for developing potential strategies to counteract metabolic diseases; yet
the mechanisms are not fully understood. Yes-associated-protein (YAP), a transcription co-activator, was demonstrated to
regulate adipose tissue functions; however, its effects on browning of subcutaneous white adipose tissue (sWAT) are unclear. We
demonstrated that YAP was highly expressed in cold-induced beige fat. Mechanistically, YAP was found as a target gene of miR-
429, which downregulated YAP expression in vivo and in vitro. In addition, miR-429 level was decreased in cold-induced beige
fat. Additionally, pharmacological inhibition of the interaction between YAP and transcriptional enhanced associate domains by
verteporfin dampened the browning of sWAT. Although adipose tissue-specific YAP overexpression increased energy ex-
penditure with increased basal uncoupling protein | expression, it had no additional effects on the browning of sSWAT in young
mice. However, we found age-related impairment of sWAT browning along with decreased YAP expression. Under these
circumstances, YAP overexpression significantly improved the impaired WAT browning in middle-aged mice. In conclusion,
YAP as aregulator of sWAT browning, was upregulated by lowering miR-429 level in cold-induced beige fat. Targeting the miR-
429-YAP pathway could be exploited for therapeutic strategies for age-related impairment of sSWAT browning.

aging, browning, miR-429, UCP1, YAP

Citation: Ye, C., Duan, J., Zhang, X., Yao, L, Song, Y., Wang, GG, Li, Q)., Wang, B., A1, D., Wang, C., et al. (2021). Cold-induced Yes-associated-protein
expression through miR-429 mediates the browning of white adipose tissue. Sci China Life Sci 64, 404—418. https://doi.org/10.1007/511427-020-
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