원광대학교 산본병원 가정의학과 김승희

근감소증의 진단 - 체성분측정 -

Introduction

Bioelectrical impedance analysis (BIA)

Dual-energy X-ray absorptiometry (DXA)

Alternative or new tests

Conclusion

비만대사증후군연구회 추계학술대회

Introduction

Bioelectrical impedance analysis (BIA)

Dual-energy X-ray absorptiometry (DXA)

Alternative or new tests

Conclusion

Sarcopenia

- Condition characterized by progressive and generalized reduction in skeletal muscle mass and muscle strength
 - → **Increased risk** of **adverse outcomes** (disability, hospitalization, death)

Muscle quantity

- Total body Skeletal Muscle Mass (SMM)
- Appendicular Skeletal Muscle Mass (ASM)
- Appendicular Lean Mass (ALM)
- Skeletal Mass Index (SMI)
 - ASM / height²
- Muscle cross-sectional area of specific muscle group

Study group	Cutoff points	
Asian Working Group for Sarcopenia (AWGS)	ASM / height ²	Men < 7.0 kg/m ²
	(DXA)	Women < <mark>5.4</mark> kg/m ²
	ASM / height ² (BIA)	Men < 7.0 kg/m ²
		Women < <mark>5.7</mark> kg/m ²
International Working Group on Sarcopenia (IWGS)	ASM / height ²	Men ≤ 7.23 kg/m²
		Women \leq 5.67 kg/m ²
European Working Group on Sarcopenia in Older	ASM / height ²	Men < 7.0 kg/m ²
		Women < 5.5 kg/m ²

Accurate methods

- **Densitometry** (수중체밀도법)
 - Muscle > water > fat
 - Most valid and reliable method
- Hydrometry (deuterium dilution)
- Echo-MRI

However,

- Complex measurement protocols
- Require specialized expertise
- Costly equipment

Validated tests and tools

Sarcopenia

Variable	Clinical practice
Case finding	SARC-F questionnaire
	Ishii screening tool
Skeletal muscle strength	Grip strength
	Chair stand test (chair rise test)
Skeletal muscle mass or muscle quality	Dual-energy X-ray absorptiometry (DXA)
	Bioelectrical impedance analysis (BIA)
	Lumbar muscle cross-sectional area by CT or MRI
Physical performance	Gait speed
	Short physical performance battery (SPPB)
	Timed-up-and-go test (TUG)
	400-meter walk or long-distance corridor walk (400-m walk)

Tool selection

Patient

Disability, Mobility

Access to technical resources

• Community, Clinic, Hospital, Research center

Purpose of testing

Progression monitoring, Monitoring rehabilitation and recovery

Introduction

Bioelectrical impedance analysis (BIA)

Dual-energy X-ray absorptiometry (DXA)

Alternative or new tests

Conclusion

Historical background

- Since 1871, Electrical properties of tissues have been described
- By 1970s, the **foundations of BIA** were established
- By 1980s, single-frequency BIA analyzers were commercially available
- By 1990s, market included multi-frequency BIA analyzers, Segmental BIA
- In 2020, <u>3MHz high-frequency BIA</u>

- 인체는 전기가 잘 통하는 수분으로 이루어짐
- 수분량에 따라 저항이 달라진다는 원리
- 인체에 미세한 교류전류를 흘려 보내 생겨나는 Bioimpedance index (BI)

- Resistance (저항)
 - 전류의 흐름을 방해하는 정도. 수분 또는 근육이 많으면 저항이 작고, 수분이 적으면 저항이 높음
 - Arises from extracellular fluid and intracellular fluid
- Reactance (유도저항)
 - 전류가 세포막을 통과하여 세포 내 수분에 전류가 흐를 때 세포막에 전류를 방해하는 전기저항
 - Arises from cell membranes
- Impedance (전기적 흐름을 방해하는 정도)
 - 인체에 미세한 교류 전류 흘렀을 때 발생하는 인체저항
 - 저항과 유도저항의 벡터 합

비만대사증후군연구회 추계학술대회

- Cylinder model for the relationship between impedance and geometry
- 체수분 부피

① 실린더 부피 계산 (부피 = 길이 x 면적)

② 임피던스의 특성 : 임피던스는 단면적에 반비례 하고, 길이에 비례

- a. Resistance (R) = $\rho L/A = \rho L^2/V$
- b. Volume (V) = $\rho L^2/R \rightarrow$ bioimpedance index (BI)

(p is resistivity of conducting material)

- **임피던스**와 실린더 길이 (인체; 사람의 키) → 전체 체수분 부피
- 임피던스 측정 → 체수분 부피 산출 → <u>제지방</u> (Fat free mass) 과 지방 (Fat) └단백질 (근육), 무기질 (뼈)

Body composition compartments

- Fat mass (FM)
 - Indicates the water-free body component
- Fat-free mass (FFM)
 - Skeletal muscle, internal organs, interstitial fat tissue
 - Total body water = ECW + ICW

Body Composition Analysis							
	Values	Total Body Water	Soft Lean Mass	Fat Free Mass	Weight		
Total Body Water (L)	27.5 (26.3 ~ 32.1)	27.5	25.1	37.3 (35.8~43.7)	59.1		
Protein (kg)	7.2		35.1 (33.3~40.7)				
Minerals (kg)	2.63 (2.44~2.98)	non-osseous			(43.9 ~ 59.5)		
Body Fat Mass (kg)	21.8 (10.3 ~ 16.5)						

- At 50 kHz, is passed between surface electrodes placed on hand and foot
- Not measure TBW
- Measure weighted sum of ECW + ICW resistivity
- Estimate FFM and TBW, but cannot determine differences in ICW
- Based on a mixture theories and empirical equations

Methods

- Different frequencies (0, 1, 5, 50, 100, 200-500 kHz) to evaluate FFM, TBW, ICW, ECW
- At low frequency (1–5 kHz), electric current not penetrate cell membrane
 → Current pass through extracellular fluid
- At higher frequency (>50 kHz), current pass through cell membrane
 - \rightarrow Intracellular and extracellular fluid compartments

Methods

Direct Segmental Multi-frequency BIA (DSM-BIA)

- Human body is made up of five cylinders
 - Right arm, left arm, torso, right leg, left leg
- 8-point tactile electrode system with direct segmental analysis to measure impedance in five body cylinders using multiple frequencies
- No estimations or empirical equations

- The higher the frequency, the more difficult it is to control the frequency in human body which results in unstable impedance measurement
- 3MHz frequency penetrates through cell membranes even better
- Enables differentiate ICW, ECW and more accurate measurement of TBW

Assumptions

- Human body is divides into <u>five cylinder</u> with a uniform electric conductivity
 - Trunk, upper and lower extremities
- FFM contain virtually all the water and conducting electrolytes in body
- FFM hydration is constant
- Conductive length is conventionally considered stature

Assumptions

- Assess total body water
- By assuming a constant hydration, predict the amount of FFM
- FFM is calculated from total body weight

using the assumption that 73% of FFM is water in adults

• Linear regression of skeletal muscle mass estimates

High correlation of FFM between DXA and BIA

SMM measure by BIA showed high correlation with SMM calculation by CT

• Correlation between skeletal muscle mass measured by CT and BIA based on Sex , Skeletal muscle area, Edema subgroups

Body Composition Result Sheet

비만대사증후군연구회 추계학술대회

https://research.inbody.com/result-sheet-interpretation/

Skeletal Muscle Mass

① Weight, Skeletal Muscle Mass and Body Fat Mass are displayed in kg

- 2 Ratio of Weight, Skeletal Muscle Mass, Body Fat Mass is displayed based on the ideal weight
- If Skeletal Muscle Mass is at 100%, sufficient amount of muscle mass compared to your ideal weight

Sarcopenia Dx.

Segmental Lean Analysis

Segmenta	al L	ean A	Inaly	sis		Based o	n ideal w	eight	Ba	ised on cu	urren	t weight 💻
		U	nder		Norma	l 👘		Ove				ECW Ratio
Right Arm	(kg) (%)	55	70	85 2.50 82	100 (1) 2.1 (2)	115	130	145	160	175	96	0.384
Left Arm	(kg) (%)	55	70	⁸⁵ 2.	100 61 5.6	115	130	145	160	175	%	0.385
Trunk	(kg) (%)	70	80	90 21.6 88	100 3.7	110	120	130	140	150	96	0.414
Right Leg	(kg) (%)	70	5.45 76.2	90	100	110	120	130	140	150	96	0.429
Left Leg	(kg) (%)	70	5.43 75.9	90	100	110	120	130	140	150	%	0.428

① Amount of lean mass in kg

Length of bar shows how much muscle mass compared to ideal body weight

2 Lean mass in percentage

Length of bar shows the percentage of lean mass compared to current weight

• Help to plan more specific exercises by analyzing the lean mass in each segments

• SMI (Skeletal Muscle Mass Index)

Research Parame	eters ———
Intracellular Water	18.3 L (23.0~28.0)
Extracellular Water	13.0 L (14.0~17.2)
Basal Metabolic Rate	1275 kcal (1428~1663)
Waist-Hip Ratio	1.14 (0.80~0.90)
Body Cell Mass	26.2 kg (32.8~40.2)
SMI	6.0 kg/m^2

- Index can be used to diagnose sarcopenia (ASM / height²)
- Asian assessment criteria for male is 7.0kg/m² and 5.7kg/m² for female

Advantages

- Affordable
- Portable
- Quick and noninvasive
- No radiation exposure
- Ease of use
- Reproducible

Disadvantages

- Indirect method
- Precision and accuracy are influenced by several factors
 - **Patient** factors : adiposity degree, fluid and electrolyte status, skin temperature
 - Environmental factors: ambient temperature, proximity to metal surfaces and electronic device
 - Assumptions underlying prediction: SF-BIA or MF-BIA
 - Instrumentation factors
 - Variations in measurement protocols

Introduction

Bioelectrical impedance analysis (BIA)

Dual-energy X-ray absorptiometry (DXA)

Alternative or new tests

Conclusion

Early papers on body composition and DXA

 Accurate to reference materials of lard and water representing fat and lean tissues

	SCAN DATE: 89/19/88
	Bone Results BMD Region g/cm2 Head 1.677 Arms 1.353 Legs 1.594 Trunk 1.984 Ribs 1.667 Pelvis 1.881 Spine 2.338 Thoracic 2.252 Lumbar 2.517 Total 1.526
V	F1 - Verify ParametersF6 - CompositionF2 - Change CutsF7 - ReanalysisF3 - Local Regions11 - SelectF4 - Alternate HeadingsEsc - MextF5 - Monochrome/ColorHome - Previous

Lunar DPX pencil beam system circa **1990**

DXA, Body composition at molecular level

 Overall flexibility to complete DXA body composition assessments on subjects of different heights, widths, weights has improved in the past 30 years

- Quantification of whole body and regional components
 - FM, lean mass (LM), bone mineral content (BMC)

- Measure X-ray transmission in crossing tissue of human body at two different energy levels
- Radiation energies are variably attenuated (absorbed or scattered) by anatomical structures
- Low-density material (soft tissue) allow more photons to pass through \rightarrow attenuate X-ray beam lesser than material with higher density (bone)

DXA estimate <u>R-value</u>

Ratio of attenuation coefficients at two different energy levels

R-value

- Soft tissue vary depending on soft tissue composition
 - The lower are R-values, the higher is fat percentage
- Constant for bone and fat in all patients

- Not measure directly FM, LM, BMC
- In pixels containing bone, DXA distinguish bone from soft tissue (FM + LM)
- FM+LM calculated in neighboring bone-free pixels → Quantity of FM, LM
 - Assuming amount of fat over bone is same as fat over bone-free tissues

The latest generation DXA

- Single whole-body scan
 - Low radiation exposure, Fast acquisition time
- Providing high-resolution images, very accurate data

Body Composition Result Sheet

Body Composition Booulto

Region	Fat Mass (g)	Lean + BMC (g)	Total Mass (g)	% Fat	%Fat Pe YN	rcentile AM
L Arm	579	3461	4041	14.3	29	11
R Arm	618	3319	3937	15.7	35	15
Trunk	4563	29147	33710	13.5	17	4
L Leg	1961	9915	11876	16.5	19	11
R Leg	1909	10431	12341	15.5	14	7
Subtotal	9631	56274	5905	14.6	18	4
Head	1161	3501	4669	24.9		
Total	10792	59781	.0574	15.3	19	5
Android (A)) 777	4288	5065	15.3		
Gynoid (G)	2079	9774	11854	17.5		
Scan Date: Scan Type:	17 Dee a Who	ember 2018 le Body	1	ID: A1217	7180B	
Analysis:	06 Aug Auto V	gust 2019 13 Whole Body	45 Version I Fan Beam	3.6.0.5		
Operator:	DA	2				
Model:	Horizo	n A (S/N 30	1197M)			
Comment:	Valuta	zione BCA				

Source: NHANES Classic White Male.

World Health Organization Body Mass Index Classification BMI = 21.1 WHO Classification Normal

BMI has some limitations and an actual diagnosis of overweight or obesity should be made by a health professional. Obesity is associated with heart disease, certain types of cancer, type 2 diabetes, and other health risks. The higher a person's BMI is above 25, the greater their weight-related risks.

Adipose Indices

Measure	Result	Perce	entile
		YN	AM
Total Body % Fat	15.3	19	5
Fat Mass/Height2 (kg/m2)	3.33	17	5
Android/Gynoid Ratio	0.87		
% Fat Trunk/% Fat Legs	0.85	37	12
Trunk/Limb Fat Mass Ratio	0.90	36	10
Est. VAT Mass (g)	312		
Est. VAT Volume (cm3)	338		
Est. VAT Area (cm ²)	64.8		
Lean Indices			
Measure	Result	Perce	entile
		YN	AM
Lean/Height2 (kg/m2)	17.6	20	12

7.91

20

16

Appen. Lean/Height2 (kg/m2) Est. VAT = Estimated Visceral Adipose Tissue YN = Young Normal

AM = Age Matched

European Radiology volume 30, pages2199–2208 (2020)

Sarcopenia Dx.

Measure	Result	Perce	entile
		YN	AM
Total Body % Fat	43.7	85	55
Fat Mass/Height ² (kg/m ²)	13.2	80	61
Android/Gynoid Ratio	0.98		
% Fat Trunk/% Fat Legs	1.02	91	76
Trunk/Limb Fat Mass Ratio	1.38	99	90
Est. VAT Mass (g)	931		
Est. VAT Volume (cm ³)	1006		
Est. VAT Area (cm ²)	193		

Lean Indices

Result	Perce	entile
	YN	AM
16.3	70	68
→ 6.31	44	54
	Result 16.3 → 6.31	Result Percent 16.3 70 → 6.31 44

Est. VAT = Estimated Visceral Adipose Tissue YN = Young Normal AM = Age Matched • Append. Lean/Height² = 6.31 kg/m²

→ Upper limit (pathological values are < 5.4 kg/m² for women according to AWGS)

Advantages

- High precision, accuracy, reproducibility
- Quick and noninvasive
- Good availability
- Low radiation exposure
 - 1–7 μSv : normal background radiation received over 1 day at sea level
- Able to differentiate FM, LM, BMC
- Obtaining regional measures (e.g., ALM)

Disadvantages

- Variability of instrument calibration procedures, hardware and software version between manufacturers
- Requires specific technical skills and operator experience
- Contraindicated in pregnancy
- Body thickness and hydration status may influence the measurements
- Inability to discriminate the different types of fat
 - Visceral, subcutaneous, intramuscular

Introduction

Bioelectrical impedance analysis (BIA)

Dual-energy X-ray absorptiometry (DXA)

Alternative or new tests

Conclusion

Computed tomography (CT)

- Assess both **muscle mass** and **quality**
- Measure muscle size and attenuation in specific district
- Measurements obtained from single cross-sectional slice are highly accurate to estimate body composition
- Strong correlation between single-slice and skeletal muscle distribution
- SMI cutoff values to use for muscle mass assessment on CT
 - CSA (Cross-sectional area) / height² : 52 55 cm²/m² for men and 39 41 cm²/m² for women
- No consensus on standardized CT thresholds of sarcopenia

Lumbar 3rd vertebra imaging by CT

• CT images of L3 correlate with whole-body muscle

• CSA of both psoas muscles (blue) at the L3 level can be used as imaging biomarker of **sarcopenia**

• CSA of all muscles (paraspinous, psoas, abdominal) included in axial CT image at L3 level (blue) can be used to assess **muscle status**

Magnetic resonance (MR)

- Measure the amount of muscle and fat tissue due to high contrast resolution and multiparametricity
- Accuracy in assessment of **muscle CSA/volume** is **very high**
- Studies have been performed on different muscular districts, with no standardization of imaging protocol
- Assess muscle quality
 - Muscular edema, fibrous infiltration, fiber contractility, elasticity

Magnetic resonance (MR)

• Dixon MR sequence of the right thigh

• Both fat and water components

• Fat fraction that can be used to quantify fatty infiltration of muscle

CT and **MR**

• Pros

- Good predictor of whole-body skeletal muscle mass and sensitive to change
- Strongly correlated with total body muscle volume
- Cons
 - High equipment costs
 - Lack of portability
 - Requirement for highly-trained personnel to use
 - Cut-off points for low muscle mass are not yet well defined
 - Not commonly used in primary care

Introduction

Bioelectrical impedance analysis (BIA)

Dual-energy X-ray absorptiometry (DXA)

Alternative or new tests

Conclusion

Conclusion

- BIA can be used as prognostic and assessment body composition tool
- DXA is the most accepted imaging modality with clear cutoff points to identify sarcopenia with close-to-zero radiation dose
- CT is the most promising with clear cutoff values for muscle mass
- These can be used to **diagnose sarcopenia** and to **monitor** during treatment