### Session I. Obesity and Gut

# **Gut Hormone Overview**

원광대산본병원

서 유 빈

Pathophysiology of the obese state



# Central regulation of energy metabolism



Peripheral signals of energy availability

Short-term : nutritional state Long-term : adiposity

Roh, E., et al. (2016). Exp Mol Med, 48(3), e216-e216.

## Central regulation of energy metabolism



#### Gut

- The first point of contact with ingested nutrients
- Metabolically active
- Key sensory organ
- Largest endocrine system
  - secretes more than 20 peptide hormones

#### Gut hormones

- GI motility and secretion
- Regulate eating behavior
- Energy and glucose homeostasis

## **Enteroendocrine cells (EECs)**

- Specialized trans-epithelial cells
- Constitutes < 1% of the epithelial cells on GI tract
- Stimulated by preabsorptive nutrients and secretes gut hormones





## Gut-brain communication through gut peptides



## Gut brain axis



## Gut hormone secretion along the GI tract

| Table 2   Types of enteroendocrine cells and their secreted products |                                       |                                                |  |  |
|----------------------------------------------------------------------|---------------------------------------|------------------------------------------------|--|--|
| Cell type                                                            | Secreted hormone                      | Location                                       |  |  |
| α cells                                                              | Glucagon                              | Pancreas (islets of Langerhans)                |  |  |
| $\beta$ cells                                                        | Insulin, islet amyloid<br>polypeptide | Pancreas (islets of Langerhans)                |  |  |
| PP cells                                                             | Pancreatic polypeptide                | Pancreas (islets of Langerhans)                |  |  |
| $\delta$ cells (D cells)                                             | Somatostatin                          | Pancreas (islets of Langerhans)                |  |  |
| G cells                                                              | Gastrin                               | Stomach<br>Occasionally in the pancreas        |  |  |
| X/A-like cells                                                       | Ghrelin, nesfatin-1                   | Stomach<br>Occasionally in the small intestine |  |  |
| GIP cells (K cells)                                                  | GIP, xenin                            | Small intestine                                |  |  |
| S cells                                                              | Secretin                              | Small intestine                                |  |  |
| I cells (CCK cells)                                                  | Cholecystokinin                       | Small intestine                                |  |  |
| N cells                                                              | Neurotensin                           | Small intestine                                |  |  |
| L cells                                                              | PYY, GLP-1, GLP-2,<br>oxyntomodulin   | Small and large intestine                      |  |  |

Abbreviations: CCK, cholecystokinin; GIP, gastric inhibitory polypeptide; GLP, glucagon-like peptide; PYY, peptide YY.

Duodenum

• GIP • Ghrelin

Jejunum • GIP • GLP1 • Apo A-IV • Guanylin

Uroguanylin

#### Ileum • GLP1 • Oxyntomodulin • PYY • Neurotensin

• Apo A-IV

- Guanylin
- Uroguanylin



#### Stomach

- Ghrelin
- Nesfatin-1
- Leptin

Lipid derived molecules

Endocannabinoid agonists

- Anorexic lipid OEA
- · Anorexic lipid OEA

Colon

- GLP1
- GLP2
- Oxyntomodulin
- PYY

## **Gut hormones**

### **Orexigenic hormones**

Ghrelin

Insulin- like peptide 5 (INSL 5)

### Anorexigenic hormones

Glucagon-like Peptide-1 (GLP-1)

Oxyntomodulin (OXM)

Glicentin

Peptide YY (PYY)

Pancreatic polypeptide (PP)

Glucose-dependent insulinotropic polypeptide (GIP)

Amylin

Cholecystokinin (CCK)

Uroguanylin

Neurotensin (NT)



Proglucagon-derived peptides

Pancreatic polypeptide (PP-fold) peptides





### Ghrelin

#### **Production and activation**

P/D1-type cells in the gastric fundus and duodenum activated by acylation (ghrelin O-acyl transferase (GOAT))

#### Stimulus for release

Fasting, Food cues

#### **Circulating level**

Peak prior to intake, fall rapidly in the postprandial state

(carbohydrates > fats)





## Ghrelin

#### Targets

growth hormone secretagogue-receptor (GHS-R) in hypothalamus, brainstem, CNS reward centers, vagus nerve)

### Effects

1) Brain (hypothalamus, brainstem)

Increases appetite, hedonic response to food cues

#### 2) Pancreas

Reduces insulin secretion

Stimulates hepatic glucose production

### 3) GI tract

Prokinetic effects - gastric emptying, gastric acid secretion



## Ghrelin

#### Change in obesity

- negatively correlated with BMI and insulin resistance
- attenuated postprandial suppression
- : related with compensatory adaptation of (+) energy balance

## scientific reports

### Circulating acyl and des-acyl ghrelin levels in obese adults: a systematic review and meta-analysis

Yanmei Wang<sup>1,2,4</sup>, Qianxian Wu<sup>2,4</sup>, Qian Zhou<sup>1</sup>, Yuyu Chen<sup>3</sup>, Xingxing Lei<sup>1</sup>, Yiding Chen<sup>1</sup> & Qiu Chen<sup>1</sup>



### Incretins



## GLP-1 (glucagon-like peptide 1)

Source of production

L cells of the distal jejunum, ileum, and colon

### Stimulus for release

Ingested nutrients (mainly carbohydrates and fats)

### **Circulating level**

Biphasic secretion

: early phase within 15 min after intake  $\rightarrow$  second, longer peak at 30-60min Reach basal concentrations again after several hours

\* Inactivated by DPP-IV, having plasma half-life of less than 2 min

 $\rightarrow$  only about 10-15% reaches the peripheral tissues





# GLP-1 (glucagon-like peptide 1)

### Targets

GLP-1 receptors : widely distributed including hypothalamus, liver, pancreas and skeletal muscle

### Effects

### 1) Brain (hypothalamus, brainstem)

Reduces appetite and food intake

### 2) Pancreas

Incretin effect : glucose-dependent insulin secretion

Suppresses post prandial glucagon release

Enhances  $\beta$ -cell proliferation

### 3) GI tract

Delays gastric emptying

4) Brown adipose tissue

Increases thermogenesis



### GLP-1 (glucagon-like peptide 1)

Change in obesity – attenuated postprandial response

#### GLP-1 responses to a liquid test meal 19 normal-weight and 20 obese subjects



### GLP-1 Response to Oral Glucose Is Reduced in Prediabetes, Screen-Detected Type 2 Diabetes, and Obesity and Influenced by Sex: The ADDITION-PRO Study

#### Diabetes 2015;64:2513-2525 | DOI: 10.2337/db14-1751

Obese and overweight individuals had up to 20% reduced GLP-1 response to oral glucose compared with normal weight individuals independent of glucose tolerance status. Higher GLP-1 responses were associated with better insulin sensitivity and  $\beta$ -cell function, older age, and lesser degree of obesity. Our findings indicate that a reduction in GLP-1 response to oral glucose occurs prior to the development of type 2 diabetes and obesity, which can have consequences for early prevention strategies for diabetes.

# GIP (glucose-dependent insulinotropic polypeptide)

### Source of production

K cells of the proximal small intestine

### Stimulus for release

Ingested nutrients (mainly carbohydrates and lipids)

### **Circulating level**

Rise a few minutes after nutrient intake, peak after approximately 1 h

Reach basal concentrations again after several hours

### Targets

GIP receptor in pancreatic islet cells, hypothalamus, adipose tissue

### Effects

Incretin effect

Strong anabolic effects on adipose tissue, promoting fat accumulation Weak effect in reducing energy intake

### Changes in obesity

### Increased





# **OXM (Oxytomodulin)**

#### Source of production

cosecreted with GLP-1 by L cells in distal gut

#### Stimulus for release

Ingested nutrients, in proportion to caloric load

#### Targets

GLP-1 receptor, glucagon receptor, unknown receptor in hypothalamus (50-fold lower affinity, 100-fold lower affinity than GLP-1, glucagon respectively)

### Effects

Reduces appetite and food intake (also by ghrelin suppression)

Neutral action in glucose homeostasis

Delays gastric emptying

### Change in obesity

Unknown



## PYY (peptide YY)

#### Source of production and activation

cosecreted with GLP-1 by L cells in distal gut

activated by DPP4 (secreted form : PYY(1-36) / active form : PYY (3-36))

#### Stimulus for release

Ingested nutrients (fat>protein>carbohydrate)

#### **Circulating level**

begin to increase 15–30 min after meals, peak 60–90 min after meals, and remain elevated for several hours

#### Targets

Y2 receptor in hypothalamus, hedonic circuits

#### Effects

Reduces appetite and food intake

Promotes insulin secretion

Delays gastric emptying

## PYY (peptide YY)

Change in obesity – lower fasting level, attenuated postprandial response



90 min after six test meals of increasing caloric content 20 obese and 20 normal-weight subjects. \*P<0.05 (unpaired t-test).

le Roux CW et al. (2006) Endocrinology 147: 3-8.

# **PP** (pancreatic polypeptide)

#### Source of production

F-cells (PP cells) located in the islets of Langerhans

#### Stimulus for release

Ingested nutrients, adrenergic stimulation

#### **Circulating level**

Increase after meal, remain for up to 6 hours post-prandially

#### Targets

Y4 receptor within the brainstem and hypothalamus

### Effects

Suppresses appetite

Gallbladder relaxation, inhibits pancreatic secretion and delays gastric emptying

#### Changes in obesity

lower fasting, post-prandial level in Prader-Willi syndrome





# **CCK (cholecystocknin)**

#### Source of production

I cells of the duodenum

#### Stimulus for release

Ingested nutrients (mainly by fat)

#### **Circulating level**

increase in 10-15 min, peak in 60 min

#### Targets

CCK-1 receptors located in peripheral tissues and CCK-2 receptors in the brain

### Effects

Reduces intake (Satiation signal)

Promotes insulin secretion

Stimulates gallbladder contraction, enhances pancreatic enzyme secretion

Slows gastric emptying, inhibits gastric acid secretion



Am J Physiol Regul Integr Comp Physiol 2001

## Amylin

#### Source of production

co-secreted with insulin by pancreatic  $\beta$ -cells

#### Stimulus for release

Ingested nutrients (glucose, lipids), incretins and neural signals

### **Circulating level**

Rise rapidly following meal, peak within an hour and remain elevated up to 4 h postprandially

#### Targets

Amylin specific receptors in CNS reward centers, stomach, pancreas

### Effects

Reduces intake

Suppresses postprandial glucagon secretion

Slows gastric emptying

### Change in obesity

increased amylin levels, downregulation of amylin receptor



## Gut hormones and hedonic eating

- Ghrelin, GLP-1 and PYY modulate neural activity in reward center (fMRI) Br J Radiol 2018
- Exposure to food-related stimuli → change in gut hormone (Ghrelin, PYY) → alteration in reward value (food cue, memory, social factor) Nature 2007
- Gut hormones receptors in olfactory and gustatory cortex → palatability of food Am J Clin Nutr 2015
- Amylin reduce reward value of high-fat, high-carb diet (animal) Neuropharmacology 2017
- → Gut hormones influence both the **intention and desire to eat**, as well as perceived **hedonic value** of food





# Altered gut hormones profiles in obesity

| Gut hormone | Change                                                                                            |
|-------------|---------------------------------------------------------------------------------------------------|
| Ghrelin     | ↓ fasting levels<br>↓ postprandial suppression                                                    |
| GLP-1       | <ul> <li>↓ fasting levels</li> <li>↓ postprandial secretion</li> </ul>                            |
| OXM         | Unknown                                                                                           |
| GIP         | ↑ levels                                                                                          |
| РҮҮ         | <ul> <li>↓ fasting levels</li> <li>↓ postprandial secretion</li> </ul>                            |
| РР          | ↓ fasting levels in Prader–Willi syndrome<br>Conflicting data in non-syndromic obesity            |
| ССК         | <ul> <li>↓ satiety effect</li> <li>↓ response to oleic infusion</li> </ul>                        |
| Amylin      | <ul> <li>↑ levels</li> <li>↓ satiety effect due to down-regulation of amylin receptors</li> </ul> |

## Gut hormones in obesity pathogenesis

Gut hormones may induce obesity

ex) Pyy knock-out mouse developed adiposity Physiolo Behav, 2009

- High energy intake per se may chronically impair gut hormone responsiveness to nutrients ex) Diet-induced obesity  $\rightarrow$  reduced circulating PYY and GLP-1 Exp Biol Med (Maywood) 2017
- Reduced population numbers and responsivity of gastrointestinal EECs in obesity (human) Sci Rep 2017

Figure 1. Expression of chromogranin A, CCK and ghrelin proteins in human duodenal biopsies. Profile of the enteroendocrine cell marker, chromogranin A (A, ChA) and the gut hormones CCK (B) and ghrelin (C), was determined in the duodenal biopsies of lean (■), obese (□) and post-operative obese, (□) by immunohistochemistry. Bar charts (on the right) show number of cells counted expressing ChA or gut hormones. Statistical significance was determined by a One-way ANOVA with differences between means

Gut hormone receptor expression on the vagus nerve and its responsivity to gut hormones are diminished in obesity (animal) Brain Res 2018





Pyy null

## Gut hormones alteration after weight loss

• After energy deficit diet

• After bariatric surgery



#### ORIGINAL ARTICLE

### Long-Term Persistence of Hormonal Adaptations to Weight Loss

Participants: **50 obese** patients without diabetes

Intervention: 10-week 'very-low-energy diet'

Outcome: Gut hormones and appetite

Time point: at baseline, at 10 weeks, and at 62 weeks



Figure 1. Mean (±SE) Changes in Weight from Baseline to Week 62. The weight-loss program was started at week 0 and completed at week 10. ITT denotes intention to treat.

Wk 10: - 13.5±0.5 kg (14.0% of initial wt.) Wk 10-62: + 5.5±1.0 kg



→ One year after initial weight reduction, levels of the circulating mediators of appetite that encourage weight regain after diet-induced weight loss do not revert to the levels recorded before weight loss.

#### **Table 2** The details of diet-induced weight changes and identified gut hormones among included studies.

| Study                    | Female<br>(%) | Basal BMI (kg/m²)                               | Weight chai | nges     |        |                                                       | Gut hormones identified and their changes                                                                                                                                                                        |                                                                            |                                                                                                                                                                                                      |
|--------------------------|---------------|-------------------------------------------------|-------------|----------|--------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | (~~)          |                                                 | Loss        | Maintain | Regain | Change (kg or kg/m²)                                  |                                                                                                                                                                                                                  | The Role of Gut He                                                         | ormones in Diet-Induced Weight Change:                                                                                                                                                               |
| Adam et al. [34]         | 72            | 30.3±2.8                                        | +           |          |        | 28.2±2.7                                              | GLP-1 (↓)*                                                                                                                                                                                                       | A Systematic Revi                                                          | ew                                                                                                                                                                                                   |
| Cahill et al. [35]       | 69            | 22.5±2.6                                        |             |          | Ŧ      | 2.4±1.3                                               | PYY ( 1 ) *                                                                                                                                                                                                      |                                                                            | ABSTRACT                                                                                                                                                                                             |
| de Luis et al. [36]      | 80            | Diet I: 35.2±6.6;<br>Diet II: 35.9±7.3          | •           |          |        | Diet I: 33.9±6.6<br>Diet II: 34.3±6.9                 | Diet I: GLP-1 (→)<br>Diet II: GLP-1 (↓) *                                                                                                                                                                        |                                                                            | Gut hormones are known to play an important role in long-                                                                                                                                            |
| Essah et al. [25]        | 83            | Diet I: 34.9±0.8<br>Diet II: 36.0±0.9           | Ŧ           |          |        | Diet I: -0.99±0.86<br>Diet II: -5.8±0.75              | Diet I: PYY ( $\downarrow$ ) * * , PYY <sub>AUC</sub> ( $\downarrow$ ) * * *<br>Diet II: PYY ( $\downarrow$ ) * * , PYY <sub>AUC</sub> ( $\downarrow$ ) * * *                                                    |                                                                            | term weight loss maintenance after bariatric surgery. However,<br>the interplay between gut hormones and diet-induced weight                                                                         |
| Hayes et al. [24]        | 80            | 33.9±1.3                                        | +           | •        |        | (BMI) 32.8 ± 1.2                                      | Phase I: ghrelin (→). CCK (↑, postpra<br>Phase II: ghrelin (↑)*, CCK (↑,postp                                                                                                                                    | ndial) *<br>randial) *                                                     | changes remains unclear. Our aims were to evaluate the alter-<br>ations of gut hormones in diet-induced weight loss, weight                                                                          |
| Jensen et al. [16]       | 55            | Diet I: 32.1 ± 4.8<br>Diet II: 32.6 ± 5.9       | ÷           |          |        | Diet I: 30.9 ± 4.9<br>Diet II: 31.6 ± 6.0             | Diet I/II: total amylin $(\downarrow)^*$ . PP $(\downarrow)^*$ .<br>GLP-1( $\rightarrow$ )                                                                                                                       | GIP ( $\downarrow$ ) * , ghrelin ( $\rightarrow$ ). PYY ( $\rightarrow$ ). | maintenance, and weight regain periods. Available studies<br>were searched on MEDLINE, EMASE, ClinicalTrials.gov, the                                                                                |
| Leidy et al. [26]        | 100           | HP: 30.5 ± 0.9<br>NP: 30.1 ± 0.8                | ÷           |          |        | HP: -6.9±0.4<br>NP: -6.9±0.6                          | HP-AM: ghrelin $(\downarrow)$ *. CCK $(\downarrow)$ ***<br>NM-AP: ghrelin $(\rightarrow)$ . CCK $(\rightarrow)$                                                                                                  |                                                                            | Cochrane Library, and Web of science from inception to Octo-<br>ber 2016. After selection, 16 studies with 656 participants were                                                                     |
| Lien et al. [23]         | 59            | 32.58 (30.76, 38.19)                            | ÷           | *        | *      | -6.31 (-8.46, -3.63)                                  | Phase I: ghrelin (↑)***. PYY (↓)*<br>Phase II: ghrelin (↓)***. PYY (↓)*                                                                                                                                          | * *. NPY (→)<br>* *. NPY(→)                                                | included. Based on current evidence, we found significant al-<br>terations of out hormones induced by different diets. In weight-                                                                    |
| Lobley et al. [31]       | 0             | 36.6±5.8                                        | -           | •        |        | -4.1                                                  | NP Diet: GIP ( $\downarrow$ ) * , PYY ( $\downarrow$ ) * , ghrelin<br>HP Diet: GIP ( $\downarrow$ ) * , PYY ( $\downarrow$ ) * , ghrelin<br>NPAA Diet: GIP ( $\downarrow$ ) * , PYY ( $\downarrow$ ) * , ghrelin | n (→)<br>n (↓)*<br>elin (↓)*                                               | loss diets, decreased fasting total PYY, GLP-1, CCK, GIP, PP, and<br>amylin along with increased ghrelin levels were observed in                                                                     |
| Moran et al. [29]        | 100           | 35.3±1.5                                        | +           |          |        | -4.2±3.9                                              | CCK ( $\rightarrow$ ), PYY ( $\rightarrow$ ), fasting ghrelin ( $\uparrow$ )                                                                                                                                     | ) * , postprandial ghrelin (↓) *                                           | most studies. After weight loss, the persistent decreases of<br>facting total PVV and CLP 1 lovels as well as increased appetite.                                                                    |
| Neacsu et al. [32]       | 0             | 34.8±4.8                                        | ŧ           |          |        | Diet I: - 2.41 ± 0.22<br>Diet II: - 2.27 ± 0.19       | Soy-HPWL diet: PYY (↓) * *, ghrelin (<br>Meat-HPWL diet: PYY (↓) * *, ghrelir                                                                                                                                    | (↑)***.GLP-1(→)<br>n(↑)***.GLP-1(→)                                        | were reported, suggesting the profound impact of altered gut                                                                                                                                         |
| O'Connor et al. [28]     | 29            | 25±3                                            | ÷           |          |        | (BW)EB: 74.2 ± 14<br>ED: 72.4 ± 13.5                  | ED diet: fasting PP (↑)*, PYY (↓)*, (<br>(↑)***, GLP-1 <sub>AUC</sub> (↑)*                                                                                                                                       | ghrelin (↓) * *, GLP-1 (→), $PP_{AUC}$                                     | hormones on later weight regain after dietary intervention. The differences between diet-induced changes in gut hormones                                                                             |
| Ratliff et al. [27]      | 0             | 25-37                                           | ÷           |          |        | Diet I: -6.7<br>Diet II: -5.9                         | ghrelin ( $\rightarrow$ ), PYY ( $\rightarrow$ ), PP ( $\rightarrow$ )                                                                                                                                           |                                                                            | and other treatments such as bariatric surgery and exercise are<br>also discussed in this review. Although significant alterations                                                                   |
| Sainsbury et al. [30]    | 0             | 34.9±4.9                                        |             | ÷        |        | -1.5±0.2                                              | ghrelin (→), PYY (→)                                                                                                                                                                                             |                                                                            | of gut hormones were found during weight changes, huge het-                                                                                                                                          |
| Sloth et al. [33]        | 52            | MUFA: 30.7±0.6;<br>LF: 30.8±0.6; CTR:<br>32±0.9 | *           | ÷        |        | MUFA: 27.5 ± 0.6<br>LF: 27.3 ± 0.5<br>CTR: 28.5 ± 0.7 | MUFA: GLP-1(↓)*, GLP-2(↓)*, PP(<br>LF: GLP-1(↓)*, GLP-2(↓)*, PP(↓)                                                                                                                                               | ↓)*.PYY(↓)*.GIP(↓)*<br>*.PYY(↓)*.GIP(↓)*                                   | erogeneity exists in methods and populations. More large-scale<br>studies with elaborate design addressing the gut hormone al-<br>terations in dietary weight regulation are required in the future. |
| Sumithran et al.<br>[14] | 68            | 34.7±3.2                                        | Ŧ           | Ŧ        |        | -13.5±0.5                                             | Phase I: PYY (↓) * * . CCK (↓) * * *<br>(↑) * * . amylin (↓) * * . GIP (↑) * *<br>Phase II: PYY (↓) * . ghrelin (↓) *<br>(↓) * . GIP (↑) * * . GLP-1 (↓) *                                                       | . ghrelin (↑)* * * GLP-1 (→). PP<br>*. CCK (↓)* amylin (↓)*. PP            |                                                                                                                                                                                                      |

HP: High protein diet group: NP: Normal protein group: MUFA: Moderate-fat diet; LF: Low-fat diet; CTR: Control-fat diet; EB: Energy balance; ED: Energy deprivation; HPWL diet: High protein weight-loss diet; PYY: Peptide tyrosine-tyrosine: GLP-1: Glucagon-like peptide-1: GIP: Glucose-dependent insulinotropic polypeptide: PP: Pancreatic polypeptide: CCK: Cholecystokinin; GLP-2: Glucagon-like peptide-2: NPY: Neuropeptide Y: \* p<0.05: \*\* p<0.01: \*\*\* p<0.001. \* \* p<0.001. \*

# Changes in gut hormones following bariatric surgery



- Long term durability of weight loss
- Metabolic benefits
- Increased satiety
- Reduced appetite
- Changes in taste and food preference
- $\rightarrow$  Not only from restricted stomach size or malabsorption

# Changes in gut hormones following bariatric surgery

| Gut hormone | Roux-en-y gastric bypass                                                                                                | Sleeve gastrectomy               |
|-------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Ghrelin     | Fasting $\downarrow$ or $\leftrightarrow$ or $\uparrow$<br>Postprandial $\downarrow$ or $\leftrightarrow$ or $\uparrow$ | Fasting ↓↓<br>Postprandial ↓     |
| GLP-1       | Fasting ↔<br>Postprandial ↑↑                                                                                            | Fasting ↔<br>Postprandial ↑      |
| GIP         | Fasting $\leftrightarrow$<br>Postprandial $\downarrow$ or $\leftrightarrow$ or $\uparrow$                               | Fasting ↔<br>Postprandial ↑      |
| ΡΥΥ         | Fasting ↔ or ↑<br>Postprandial ↑ ↑                                                                                      | Fasting ↔<br>Postprandial ↑      |
| OXM         | Fasting ↔<br>Postprandial ↑↑                                                                                            | Fasting ↔<br>Postprandial ↔ or ↑ |

"Hindgut hypothesis"

Intestinal rearrangement  $\rightarrow$  Large nutrient loads to distal gut  $\rightarrow$  Exposure to EEC (L cell)  $\rightarrow$  GLP-1, PYY  $\uparrow$ 

### Summary

- 장호르몬은 중추신경계와 말초조직에 작용하여 식이행동과 에너지항상성을 조절하는 중요한 요소이다.
- 비만에서는 장호르몬의 농도와 식이에 대한 반응이 변화되어 있다.
- : 혈중 장호르몬의 변화가 비만의 발생에 기여하며,
   고열량식이로 유도된 비만은 장호르몬의 분비와 장호르몬에 대한 반응성에 영향을 주기도 한다.
- 체중감소 중재방법에 따른 식이행동 및 체중변화 양상의 차이는 장호르몬과 밀접한 연관이 있다.

Thank you for your attention