

SICOM & AOCO 2024

SOMS International Conference on Ubesity & Metabolism in conjunction with **Asia-Oceania Conference on Ubesity**

Empowering Health, Inspiring Change: Practical Solutions for Obesity

Date October 24 (Thu)~26 (Sat), 2024

Venue aT Center, Seoul, Republic of Korea (3F Segyero Room & 4F Changjo Room)

Protecting Kidney in Patients with Obesity and Diabetes: Focusing on SGLT2 Inhibitor and GLP-1 Receptor Agonist

Jun Hwa Hong MD, PhD

Division of Endocrinology, Daejeon Eulji Medical Center, Eulji University, Republic of Korea

Be proactive for your T2D patient! Cardio-renal-metabolic disease continuum and comprehensive treatment should aim early to target multiple risk factors with SGLT2i

혈당 조절 상태

당뇨병 유병자 중 당화혈색소가 6.5% 미만인 경우는 3명 중 1명 (32.4%) 밖에 되지 않았고, 당화혈색소가 7.0% 미만으로 조절되는 경우는 60.6%임. 당화혈색소가 8.0% 이상으로 적극적인 치료가 필요한 경우는 16%임. 2019-2020년 보다 2021-2022년 통합자료에서 기진단자의 혈당조절 상태가 매우 좋아짐.

연령대별 평균 당화혈색소

연령대별 평균 당화혈색소는 30-40대에서 다른 연령대에 비해 더 높음. 40대 이후 평균 당화혈색소가 2021-2022년도 향상되었으나 30대에서는 이전에 비해 더 높은 수치를 보임.

청년당뇨병환자의 43%만이 당뇨병을 진단받았고, 35% 정도만 당뇨병약제로 치료 중임. 당화혈색소 6.5% 기준으로 10명 중 3명만이 혈당조절 목표에 도달함. 청년층 중에서도 20대에서 인지율과 치료율이 매우 낮고, 특히 조절률에서는 남녀간 심한 차이를 보임.

당뇨병 유병자: 공복혈당이 126 mg/dL 이상이거나 의사로부터 당뇨병을 진단받았거나 당뇨병약제로 치료 중이거나 당화혈색소가 6.5% 이상인 경우 당뇨병 인지율: 당뇨병 유병자 (당화혈색소 기준) 중 의사로부터 당뇨병 진단을 받은 분율 / 당뇨병 치료율: 당뇨병 유병자 (당화혈색소 기준) 중 현재 당뇨병약제로 치료 중인 분율 당뇨병 조절률: 당뇨병 유병자 (당화혈색소 기준) 중 당화혈색소가 6.5% 미만인 분율, 당화혈색소가 7.0% 미만인 분율

숫자로 보는 우리나라 만성콩팥병 환자의 심혈관계 질환

CKD Screening and Diagnosis

Who and when to screen?

T2D

Yearly starting 5 years after diagnosis

Yearly starting at diagnosis

Both the ADA and KDIGO recommend annual screening of patients with diabetes for CKD

What to do with a positive result?

Repeat and confirm:

- Evaluate possible temporary or spurious causes
- Consider using cystatin C and creatinine to more precisely estimate GFR
- Only persistent abnormalities define CKD

Initiate evidence-based treatments

What defines CKD diagnosis?

Persistent urine ACR ≥30 mg/g

and/or

Persistent eGFR <60 mL/min/1.73 m²

and/or

Other evidence of kidney damage

Persistence for at least 3 months is therefore required for diagnosis

9. Pharmacologic Approaches to Glycemic Treatment- T2D

▶ **19** 심부전 (*p*EF/*r*EF)에는 SGLT2i을 권고 A • 혈당 조절과 심부전 입원 예방

NEW 9.20 CKD*: SGLT2i 반드시 사용 A

- CKD 진행 최소화
- CV event/ 심부전 입원 감소

*(eGFR 20 – 60 and/or albuminuria)

- ▶ **9.21** T2D+CKD (eGFR<30) 에서 GLP-1 RA는 혈당조절 목적으로 선호됨 **B**
 - 저혈당 위험 감소/ CV event 감소

ADA 2024 : 11. Chronic Kidney Disease and Risk Management

• 임신하지 않은 당뇨병 및 고혈압 환자의 약제 선택

- ACR 30-299 **B**
- ACR \geq 300 and/or eGFR < 60 mL/min/1.73 m² **A** (strongly recommended)

NEW (CKD 진행 및 CV events 감소 목적)

NEW

11.7 단백질 섭취

- 투석 전 G3 이상 CKD: 0.8 g/Kg BW 목표 A
- 투석 시 1.0–1.2 g/kg/day 섭취를 고려 (should be considered) B (since protein energy wasting is a major problem in dialysis)

Current DKD management

Nephrol Dial Transplant, 2024, **0**, 1–10

https://doi.org/10.1093/ndt/gfae032 Advance access publication date: 6 February 2024

How do SGLT2 inhibitors protect the kidney? A mediation analysis of the EMPA-REG OUTCOME trial

Christoph Wanner 🕩¹, Masaomi Nangaku², Bettina J. Kraus^{3,4,5}, Bernard Zinman⁶, Michaela Mattheus⁷, Stefan Hantel⁸, Martin Schumacher⁹, Kristin Ohneberg⁹, Claudia Schmoor¹⁰ and Silvio E. Inzucchi¹¹

¹Department of Medicine, Würzburg University Clinic, Würzburg, Germany
²Division of Nephrology and Endocrinology, Department of Hemodialysis and Apheresis, The University of Tokyo Hospital, Tokyo, Japan
³Medical Affairs, Boehringer Ingelheim International GmbH, Ingelheim, Germany
⁴Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
⁵Comprehensive Heart Failure Centre, University of Würzburg, Würzburg, Germany
⁶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
⁷Biostatistics, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
⁸Biostatistics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
⁹Institute for Medical Biometry and Statistics and Clinical Trials Unit, Faculty of Medicine, and Medical Center, University of Freiburg, Freiburg, Germany
¹⁰Clinical Trials Unit, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
¹¹Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
Correspondence to: Christoph Wanner; E-mail: wanner_c@ukw.de

Potential mechanisms underlying the kidney benefits of SGLT2 inhibitors

- Activation of tubuloglomerular feedback (leading to reduction of intraglomerular pressure and glomerular hyperfiltration)
- Reduced proximal tubule metabolic stress and hypoxia
- Reduced mitochondrial damage
- Reduced hyperglycemia-induced inflammation
- Reduced oxidative phosphorylation and less production of reactive oxygen species and angiotensinogen
- Improved oxygenation/reduction in plasma volume

The empagliflozin treatment effect on the composite kidney outcome

Potential mediator Nephrol Dial Transplant, 2024, 0, 1–10 Potential mediator

Percentage mediation of the empagliflozin treatment effect on the composite kidney outcome

IGSP	5.4					
FCC	36		5	o1/F		
eAG	108		1	158cm, 6	4kg	
	0 79			25 63 kg	$/m^2$	
ureatinine	0.73		23.03 Kg/III			
estimated GFR	84.05					
ficroalbumin(u)/Creatin			-	-	~	
licroalbumin(Random Urin	5.9		-	ACR	42 58%	
Creatinine(Urine)	194.04		ł.			/
licroalbumin(u)/Creatin	30.41		-	µg/mg	~ <30	
Hucose(Urine)	9		-	mg/dL	~	
_ipid battery_Em			-	-		rd
[-Cholesterol	242			mg/dL	1 ~ 240	an
HDL-Cholesterol	73		-	mg/dL	28 ~ 84	lce
friglyceride	82		-	mg/dL	1 ~ 250	N
DL-Cholesterol	161		۸	mg/dL	0 ~ 129	B
CBC_Em			-			Q
/BC	6.79		-	x10° /µl	3.8 ~ 10.5	0
RBC	4.20		-	백만/#l	3.5 ~ 5.5	
HGB	12.3		ī	a/dl	12.0 ~ 16	i
HCT	37.3		·	Hct	: 7.5%	
1CV	88.9		-			
1CH	29.3		-	pg	26.0 ~ 35.0	
1CHC	32.9		-	g/dL	31.0 ~ 37.0	
RDW	12.7		-	%	11.0 ~ 16.0	
₽D₩	39.0		-	%	25.0 ~ 65.0	
PLT	311		-	x10° /µl	130.0 ~ 450.0	
Neutrophil	42.3	#2.88	-	%	37 ~ 75	
_ymphocyte	49.2	#3.34	-	%	12 ~ 50	

NGSP	5.5					
IFCC	37				51/F	
eAG	111				158cm, 63	.2kg
Creatinine	0.66		-	mg/dL	25.34 kg/r	n ²
estimated GFR	94.42		-	-		
Microalbumin(u)/Creatin			-	-	~	
Microalbumin(Random Urin	2.0		-	mg/dL	~	
Creatinine(Urine)	114.57		-	mg/dL	~	
Microalbumin(u)/Creatin	17.46		-	µg/mg	~ <30	
Glucose(Urine)	3658		-	mg/dL	~	
Lipid battery_Em			-	-		
T-Cholesterol	144		-	mg/dL	1 ~ 240	
HDL-Cholesterol	63		-	mg/dL	28 ~ 84	
Triglyceride	65		-	mg/dL	1 ~ 250	
LDL-Cholesterol	61		-	mg/dL	0 ~ 129	
CBC_Em			-			
WBC	6.23		-	x10° /µl	3.8 ~ 10.5	
RBC	4.56		-	백만/#0	3.5 ~ 5.5	
HGB	13.2		-	g/dL	12.0 ~ 16.0	
нст	40.1		-	%	35.0 ~ 47.0	
MCV	87.8		-	fl	80.0 ~ 100.0	
МСН	28.9		-	pg	26.0 ~ 35.0	
мснс	32.9		-	g/dL	31.0 ~ 37.0	
RDW	13.0		-	%	11.0 ~ 16.0	
PDW	40.2		-	%	25.0 ~ 65.0	
PLT	303		-	x10° /µl	130.0 ~ 450.0	
Neutrophil	47.0	#2.93	-	%	37 ~ 75	
Lymphocyte	43.5	#2.71	-	%	12 ~ 50	

The relationship between SGLT2 and systemic blood pressure regulation

Hypertension Research (2024) 47:2094–2103

Mechanisms underlying the blood pressure lowering effects of GLP-1RAs

Current Opinion in Pharmacology 2023, 69:102355

Diabetes & IHD

SGLT-2 Inhibitors

GLP-1R Agonists

Rationale for combining a GLP-1RA with a SGLT2 inhibitor

Effect of GLP-1 RAs and SGLT2 inhibitors on metabolic/cardiovascular/renal parameters.

	GLP-1 RAs	SGLT2i	GLP-1 RA/SGLT2i
MACE	11	11	
Atherogenesis	Ļ	_	ļ
Hemodynamic benefit	1	11	
Glycemic control (A1c)	11	11	111
Insulin sensitivity	1	1	11
Beta cell function	111	11	1111
Blood pressure	Ļ	Ļ	11
Lipid profile	1	-	1
Body weight	11	Ļ	
Visceral fat	Ļ	Ļ	11
NAFLD/NASH	1	—	
Inflammation	Ļ	-	1
Endothelial function	1	-	1
Natriuretic	1	11	I 1
Diabetic nephropathy	Ļ	11	11
Diabetic retinopathy	1?	_	1?

WHY WAS THE TRIAL DONE?

Semaglutide has been shown to improve glycemic control, lead to weight loss, and reduce cardiovascular events in patients with type 2 diabetes. Its effect on kidney outcomes in patients who also have chronic kidney disease is incompletely understood.

HOW WAS THE TRIAL CONDUCTED?

3533 participants with type 2 diabetes and chronic kidney disease were randomly assigned to receive weekly subcutaneous semaglutide (1.0 mg) or placebo. The primary outcome was major kidney disease events, a composite of the onset of kidney failure (initiation of dialysis, kidney transplantation, or an estimated glomerular filtration rate [eGFR] of <15 ml per minute per 1.73 m²), at least a 50% reduction in eGFR from baseline, or death from kidney-related or cardiovascular causes.

PARTICIPANTS LAND DICINE 3533 adults **WHO** Mean age, 67 years VOL. 391 NO. 2 Men: 70%; Women: 30% High-risk chronic kidney ic Kidney Disease CLINICAL STATUS disease Diabetes Type 2 diabetes , Peter Rossing, M.D., D.M.Sc., kris, M.D., Florian M.M. Baeres, M.D., anna Leonora Lausvig, M.Sc., and TRIAL DESIGN ees and Investigators* DOUBLE-BLIND T2DM with CKD RANDOMIZED PLACEBO-CONTROLLED eGFR 50~75 ml/min/1.73 m² LOCATION: 387 SITES IN 28 COUNTRIES and a urinary ACR 300~5000 or eGFR 25~50 ml/min/1.73 m² and a urinary ACR 100~5000

N Engl J¹Med 2024;391:109-21.

1767 Participants

Major Kidney Disease Events

Hazard ratio, 0.76 (95% CI, 0.66–0.88); P=0.0003

20 people

Decline in Kidney Function

Difference in mean annual decline, 1.16 ml/min/1.73 m² 95% CI, 0.86–1.47; P<0.001

CONCLUSIONS

In adults with type 2 diabetes and chronic kidney disease, semaglutide reduced the risk of clinically important kidney outcomes and death from cardiovascular causes.

nature medicine

9

Article

https://doi.org/10.1038/s41591-024-03133-0

Effects of semaglutide with and without concomitant SGLT2 inhibitor use in participants with type 2 diabetes and chronic kidney disease in the FLOW trial

Outcomes for semaglutide 1.0 mg versus placebo in subgroups with/without SGLT2i use at baseline for the primary five-component outcome

eGFR over time with/without SGLT2i use at baseline, based on serum creatinine and tatin C

C eGFR-cystatin-C in participants with SGLT2i use at baseline

d eGFR-cystatin-C in participants without SGLT2j use at baseline. Nat Med. 2024 Oct;30(10):2849-2856.

Semaglutide lowered UACR at week 104; 24% with SGLT2i and 34% without SGLT2i use

Nat Med. 2024 Oct;30(10):2849-2856.

Time to all-cause death with semaglutide or placebo according to baseline use of SGLT2i

Time to first MACE with semaglutide or placebo according to baseline use of SGLT2i.

Summary: Combination of a GLP-1RA with a SGLT2 inhibitor

SICOM & AOCO 2024

SOMS International Conference on Ubesity & Metabolism in conjunction with **Asia-Oceania Conference on Ubesity**

Empowering Health, Inspiring Change: Practical Solutions for Obesity

Date October 24 (Thu)~26 (Sat), 2024

Venue aT Center, Seoul, Republic of Korea (3F Segyero Room & 4F Changjo Room)

Thank you for your attention !!